0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Четность и нечетность функции по графику

Понятие функции. Основные свойства функций. Область определения и значения. Четность и нечетность. Периодичность, нули функции, промежутки знакопостоянства, монотонность (возрастание, убывание), экстремумы (максимумы, минимумы), асимптоты

Основные свойства функций. Понятие функции. Область определения и значения. Четность
и нечетность. Периодичность, нули функции, промежутки знакопостоянства, монотонность
(возрастание, убывание), экстремумы (максимумы, минимумы), асимптоты. Алгоритм описания функции.

Понятие функции. Область определения и значения

  • Числовая функцияy=f(x) это соответствие, которое каждому числу x (аргумент функции) из некоторого заданного множества сопоставляет единственное число y (значение функции)
  • Область определения функции D это множество значений х
  • Область значений функции E это множество значений y
  • График функции это множество точек координатной плоскости (x,y), таких, что y=f(x)

Понятие функции. Четность и нечетность

  • Функция f(x)четная, если область определения функции симметрична относительно нуля и для любого x из области определения f(-x)=f(x)
  • График четной функции симметричен относительно оси y

  • Функция f(x)нечетная, если область определения функции симметрична относительно нуля и для любого x из области определения f(-x)=-f(x)
  • График нечетной функции симметричен относительно начала координат

Понятие функции. Периодичность

  • Функция f(x)периодическая, с периодом T>0, если для любого x из области определения значения x+T и x-T также принадлежат области определениыя f(x)=f(x+T)=f(x-T)
  • График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов

Нули функции:

  • Нуль функции f(x) — значение аргумента x, при котором функция обращается в нуль: f(x)=0
  • В нуле функции ее график имеет общую точку (пересекается) с осью x

Промежутки знакопостоянства:

  • Промежутки знакопостоянства функции f(x) это промежутки, на которых функция сохраняет знак.

Монотонность (возрастание, убывание):

  • Определение возрастающей функции: Функция f(x) — возрастающая на интервале (a:b), если для любых x1 и x2 из этого интервала, таких, что x1 f(x2)

Экстремумы (максимумы и минимумы):

  • Внутренняя точка xmax области определения функции называется точкой максимума, если для всех x из некоторой окрестности этой точки справедливо неравенство f(x) f(xmin)
  • Значение ymin=f(xmin) называется минимум функции.

Асимптоты:

  • Асимтота графика это прямая, к которой неограниченно приближается точка при удалении этой точки по бесконечной ветви:

Алгоритм описания функции:

  1. Область определения функции
  2. Область значения функции
  3. Является ли функция периодической
  4. Является ли функция четной или нечетной
  5. Точки пересечения графика с осями координат
  6. Промежутки знакопостоянства
  7. Интервалы возрастания и убывания
  8. Абсциссы и ординаты точек экстремума
  9. Наличие асимптот

Консультации и техническая
поддержка сайта: Zavarka Team

Четность и нечетность функции. Период функции. Экстремумы функции

Содержание

Способы задания функции

Пусть функция задается формулой: y=2x^<2>-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 cdot (-0,5)^<2>-3=-2,5 .

Взяв любое значение, принимаемое аргументом x в формуле y=2x^<2>-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

D(f)=(-infty ; +infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 cdot (-x)^<3>-7 cdot (-x)^<7>= -3x^<3>+7x^<7>= -(3x^<3>-7x^<7>)= -f(x) .

Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.

Периодическая функция

Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T neq 0 .

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

Промежутки, где функция положительная, то есть f(x) > 0 — отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_<1>; x_<2>) cup (x_<3>; +infty )

Промежутки, где функция отрицательная, то есть f(x) 0 , для которого выполняется неравенство left | f(x) right | neq K для любого x in X .

Пример ограниченной функции: y=sin x ограничена на всей числовой оси, так как left | sin x right | neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) > y(x_<2>) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) 0 четная функция возрастает, то убывает она при x 0 четная функция убывает, то возрастает она при x 0 нечетная функция возрастает, то возрастает она и при x 0 , то она будет убывать и при x f(x_<0>) . y_ — обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_ <0>, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_ <0>), и для них тогда будет выполняется неравенство f(x)

Четность и нечетность функции — алгоритм исследования, условие и примеры

Общие сведения

Исследование функции на четность и нечетность — базовый элемент, показывающий ее поведение, которое зависит от значения аргумента. Последний является независимой переменной, соответствующей определенным допустимым значениям. Множество чисел, которое может принимать неизвестная независимого типа, называется областью определения. Областью значений функции вида y = f (x) являются все значения зависимой переменной «y».

Теперь следует сформулировать список базовых знаний, которые необходимы для анализа выражений на четность. Если нужно выполнить другие процедуры исследования, то его следует расширить. Например, для нахождения максимума следует ознакомиться с производной. Необходимый минимум знаний о функциях следующий:

  1. Область определения — D (f).
  2. Виды.
  3. Правила.
  4. Свойства для четных и нечетных.
  5. Классификация.

Первый элемент необходим для выявления аргумента, при котором можно узнать его недопустимые значения, а также определить симметричность. От свойств и вида также зависит четность. Первое рекомендуется применять в частных случаях, например, произведение двух нечетных тождеств. Результат следует проверять при помощи соответствующего программного обеспечения. Например, онлайн-калькулятор четности и нечетности функций позволяет следить за правильностью решения.

Область определения

Первый элемент, который нужен для анализа, следует рассмотреть подробнее. Область определения функции z = g (y) специалисты рекомендуют обозначать литерой «D». Полная запись выглядит таким образом: D (z). Кроме того, следует выяснить симметричность множества. Под последним понимается некоторый интервал, который нужно найти.

D (z) записывается в виде множества. Например, D (z) = [1;8]. Запись значит ограниченность аргумента, принимающего значения от 1 включительно до 8 включительно, то есть следующие цифры: 1, 2, 3, 4, 5, 6, 7 и 8. Если указана запись в виде (1;4), то ее нужно трактовать таким образом: от 1 не включительно до 4 не включительно, то есть в интервал входят только числа 2 и 3.

Для определения величины D (z) необходимо решить неравенство, корнем которого являются все значения аргумента. Для этих целей можно использовать и специализированное программное обеспечение. Математики рекомендуют свести пользование решебниками и программами к минимуму, поскольку не всегда предоставится возможность воспользоваться ими на экзаменах или контрольных.

Основные виды

Исследование функции зависит от ее вида, который нужно правильно определять. Для начала следует обозначить сложность, поскольку от этого параметра зависят дальнейшие действия и свойства, которыми придется руководствоваться. Математики производят разделение таким образом:

  • Простые: алгебраические, трансцендентные и тригонометрические.
  • Составные или сложные.

Алгебраические делятся на рациональные (без корня) и иррациональные (наличие радикала). Первые состоят из целых и дробных. D (z) для этих типов — все множество действительных чисел. Если функция представлена в виде обыкновенной дроби, то значение аргумента, приводящее к пустому множеству (знаменатель равен нулю), нужно исключить. Когда аргумент находится под знаком радикала (корня), тогда она считается иррациональной. Однако следует проверить, чтобы под корнем четной степени не было отрицательного значения, которое приводит к неопределенности.

Все функции, содержащие sin, cos, tg и ctg, являются тригонометрическими. Кроме того, arcsin, arccos, arctg и arcctg — обратные тригонометрические. Трансцендентные можно разделить на такие три группы: показательные, степенные и логарифмические.

Второе отличается от первого формулой. Другой тип классификации основан на периодичности. В зависимость от этого параметра все функции делятся на периодические и непериодические. Параметр периодичности означает повторение ее поведения через определенный период Т.

Существует еще один критерий. Он называется монотонностью. В зависимости от него, функции бывают монотонными и немонотонными. Первая группа характеризуется постоянностью, то есть она либо убывает, либо возрастает. Все остальные могут убывать и возрастать на определенных промежутках. Примером является y = cos (x), поскольку она является убывающей и возрастающей через определенный период.

Правила для выявления

Для того чтобы исследовать на четность, существует два правила или теоремы, которые записываются в виде двух формул. Четная — функция вида w (x), для которой справедливо такое равенство: w (-x) = w (x). Для нечетной соотношение немного другое: w (-x) = w (x). Однако бывают выражения, к которым не применимы эти тождества. Они принадлежат общему виду.

Для оптимизации решения специалисты рекомендуют использовать некоторую последовательность действий или специальный алгоритм. Он позволяет определить четность за минимальный промежуток времени и без ошибок. Необходимо обратить внимание на пункты или шаги, по которым выполняется подробная оценка:

  • Разложить при необходимости на простые элементы.
  • Определить D (z). Если ее график симметричный, то нужно переходить к следующему шагу. В противном случае результатом является функция общего вида.
  • Проверить, подставив в выражение отрицательное значение аргумента w (-x).
  • Выполнить сравнение: w (-x) = w (x).
  • Сделать соответствующий вывод.

Если w (-x) = w (x), то это свидетельствует о четности. При выполнении тождества w (-x) = -w (x) функция является нечетной. Важно обратить внимание на D, поскольку в некоторых точках равенства и условия могут не выполняться. Это свидетельствует о том, что искомая функция принадлежит к общему виду, то есть не является четной и нечетной.

Одним интересным способом является графический метод (принцип). Для его реализации нужно выполнить построение графика. Если он будет симметричным относительно оси ординат ОУ, то равенство w (-x) = w (x) будет выполняться. В случае симметричности относительно начала системы координат (точка пересечения осей абсцисс и ординат), будет справедливым равенство w (-x) = -w (x).

Следствия из утверждений

Свойства или следствия из утверждений расчетов позволяют оптимизировать процесс решения, поскольку нет необходимости выполнять какие-либо действия. Очень часто приходится тратить много времени на задание, которое можно решить за несколько минут. Математики выделяют следующие свойства для таких функций:

  • Симметричность графика: четная — относительно ОУ, а нечетная — относительно начала координат.
  • Функция эквивалентна сумме четной и нечетной.
  • Результат комбинации четных эквивалентен четной, а нечетных — нечетной.
  • Результирующее произведение: 2 четных — четное, 2 нечетных — четная, а 2 разной четности — нечетной.
  • Композиция: 2 нечетных — нечетна, четная и нечетная — четна, любая с четной — четна (не наоборот).
  • При взятии производной от четной результирующая является нечетной, а от нечетной — четной.
  • Определенный интеграл вида ∫(g (x))dx с границами от -А до А равен двойным интегралам ∫(g (x))dx с границей от -А до 0 и от 0 до А: ∫(g (x))dx |(-A;A) = 2∫(g (x))dx |(-A;0) = 2∫(g (x))dx |(0;A).
  • Определенный интеграл нечетной функции с границами -А и А равен 0.
  • Ряд Маклорена: четные степени соответствуют четной и наоборот.
  • Ряд Фурье: четная содержит только выражения с cos, а нечетная — sin.

Второе свойство можно записать математически таким образом: z (x) = y (x) + w (x). Выражение y (x) можно выразить следующим образом: y (x) = [z (x) — z (-x)] /2. Тождество w (x) выражается через z (x) формулой: w (x) = [z (x) + z (-x)] /2.

Классификация по четности

Специалисты давно уже исследовали некоторые функции. Примеры четных и нечетных можно классифицировать по признаку четности. Эти данные значительно ускоряют процесс анализа любого выражения. К нечетным функциям относятся следующие (следует учитывать, что аргумент «x» принадлежит множеству действительных чисел Z):

  • Возведение в степень, показатель которой является целым и нечетным.
  • Сигнум (sgn) — кусочно-постоянный тип, который задан несколькими формулами, объединенными в систему.
  • Радикал положительной нечетной степени.
  • Тригонометрические: sin (x), tg (x), ctg (x) и cosec (x).
  • Обратные тригонометрические: arcsin (x), arcctg (x), arcsec (x) и arccosec (x).
  • Гиперболические и их обратные выражения: гиперболические синус и косинус, а также ареасинус, ареатангенс и ареакотангенс.
  • Гудермана и обратная ей: gd (x) = arctg (sh (x)) и arcgd (x) = arch (sec (x)).
  • Интегральный синус: Si (x).
  • Матье: se (x).

Кроме того, существуют еще составные выражения, элементами которых являются простые функции. Для анализа необходимо руководствоваться свойствами. Следующий класс, который объединяет все четные выражения, состоит из следующего перечня:

  • Возведение в четную и целую степень.
  • Модуль аргумента.
  • Константа.
  • Тригонометрические: cos (x) и sec (x).
  • Гиперболические: косинус и секанс.
  • Дельта-функция Дирака: z (x) = δ(x).
  • Гаусса: z (x) = a * exp[(-(x — b)^2) / 2c 2 ].
  • Кардинальный синус: sinc (x).

Остальные составляют класс общего вида, который не принадлежит к четным и нечетным. При решении задач необходимо иметь таблицу всех функций, которая должна быть составлена перед обучением. Следует учитывать, что на экзаменах и контрольных функции, используемые для описания каких-либо процессов, практически не исследуются. Зная алгоритм, не составит особого труда проверить выражение на четность. Следующим этапом, который поможет закрепить теоретические знания, считается практика.

Пример решения

Задачи исследования функции на четность встречаются редко, поскольку этот элемент входит в полный анализ ее поведения. Пусть дано тождество z (y) = (y 2 — y — 2) / (y 2 — 1). В этом случае следует действовать по алгоритму:

  • Состоит из двух элементов: g (y) = y 2 — y — 2 и h (y) = y 2 — 1.
  • Область значений: D (y 2 — y — 2) = (-бесконечность; +бесконечность) и D (y 2 — 1) = (-бесконечность; -1) U (-1;1) U (1; +бесконечность).
  • График функции является симметричным, поскольку задан параболой.
  • Выполнить анализ по формулам: g (-y) = (-y)^2 + y — 2 = y 2 + y — 2 и h (-y) = (-y)^2 — 1 = y 2 — 1.
  • В двух случаях функции являются нечетными: в первом — изменение знака, а во втором — от четной отнимается 1. Следовательно, искомое выражение является нечетной функцией.

Задачу можно решить вторым способом — проанализировать составляющие элементы. Например, знаменатель всегда будет нечетным, поскольку от четного y 2 отнимается нечетное число (6 — 1 = 5). Этот способ используется в некоторых языках программирования, для написания подпрограмм и процедур, позволяющих проверить или отобрать все нечетные значения. Числитель также является нечетным, поскольку он содержит нечетный элемент «y». Если построить график, используя любой из веб-ресурсов, то он окажется симметричным относительно начала координат.

Первое свойство свидетельствует о том, что функция является нечетной. Некоторые новички делают распространенную ошибку, считая, что отношение нечетных есть величина четная. Однако такое утверждение не применимо в этом случае. Если бы было произведение двух нечетных выражений, то результат являлся бы четным. Об этой особенности свидетельствует свойство под номером 4.

Таким образом, для исследования функции на предмет ее четности или нечетности нужно воспользоваться специальным алгоритмом, который рекомендуют математики. Он позволит выполнить операцию без ошибок и за короткий промежуток времени.

Чётность и нечётность функций

Привет всем посетителям! Сегодня рассматриваем вопрос четности и нечетности функций.

Если , то функция четная.

Если , то функция нечетная.

При этом важно, чтобы область определения функции была бы симметричной относительно оси ординат, а при наличии в ней выколотых точек или интервалов они также должны располагаться симметрично.

Установить, симметрична ли область определения функции. Если это так, то найти и сравнить с

Если то функция — четная.
Если , то функция нечетная.

Функция совсем не обязана быть четной или нечетной, она может быть «никакой», несмотря на то, что область определения симметрична.

1. Определить, является ли четной функция: .

Область определения этой функции – все действительные числа, то есть она симметрична. Теперь подставим вместо x – (-x) и посмотрим, что получится:

– функция четна.

Надо отметить, что график четной функции симметричен относительно оси ординат, она для него словно зеркало. Поэтому графики таких функций можно строить в правой полуплоскости, а в левую просто отражать.

Верно и следующее: если функция задана графиком, который симметричен относительно оси ординат, то она четная.

2. Определить, является ли четной функция: .

Область определения этой функции может быть найдена из системы неравенств:

=0><<1-x+x^2>>=0>>><>” title=”delim<1><<< x^2+x+1>>=0><<1-x+x^2>>=0>>><>”/>

Оба неравенства всегда соблюдаются, так как дискриминант обоих трехчленов всегда меньше 0, и ветви парабол направлены вверх – таким образом, мы установили, что область определения симметрична – это вся числовая ось.
Теперь подставим вместо x – (-x): – данная функция нечетна.

График нечетной функции симметричен относительно начала координат, то есть каждой его точке соответствует точка, получить которую можно поворотом на 180 градусов относительно начала координат. Поэтому графики таких функций можно строить в правой полуплоскости, а изображение в левой полуплоскости получить, повернув картинку на 180 градусов.

Верно и следующее: если функция задана графиком, который симметричен относительно начала координат, то она нечетная.

3. Определить, является ли четной функция: .

Область определения может быть найдена из системы неравенств:

0><<1-x><>0>>><>” title=”delim<1><<</<1-x>>>0><<1-x><>0>>><>”/>

Таким образом, область определения симметрична, и не содержит выколотые точки (1) и (-1).

Подставляем (-х) вместо х:

– исходную функцию не получили, а получили совсем другую – значит, исходная функция не является ни четной, ни нечетной (что и подтверждает график). Мы убедились, что симметрия области определения еще не означает, что функция четная или же нечетная.

4. Определить, является ли четной функция: .

Область определения – вся числовая ось, кроме 0 – симметричная.

Подставляем (-х) вместо х:

– функция нечетна.

5. Определить, является ли четной функция: .

Область определения – вся числовая ось, кроме точек 3 и (-3) – симметричная.

Подставляем (-х) вместо х:

– функция четная.

6. Определить, является ли четной функция: .

Область определения – вся числовая ось – симметричная.

Подставляем (-х) вместо х:

– функция четная.

7. Определить, является ли четной функция: .

Область определения – вся числовая ось, кроме 0 – симметричная.

Подставляем (-х) вместо х:

– функция нечетная.

Кроме того, здесь мы имеем дело с суммой двух функций.

Сумма двух нечётных функций – нечётна.

Сумма двух чётных функций – чётна.

А вот сумма двух функций разной четности – как правило, ни четна, ни нечетна.

Определим четность этих функций по отдельности.

– функция нечетная.

– функция нечетная.

8. Исследуем теперь такую функцию:

Одна из них нечётна – это мы только что показали, а вторая?

Область определения функции симметрична, функция нечётна, так как . Тогда по правилу сложение двух нечетных функций даст функцию нечетную.

9. Наконец, последняя:

– имеем произведение двух функций.

Произведение или частное двух нечётных функций чётно.

Произведение или частное двух чётных функций чётно.

Произведение или частное нечётной и чётной функций нечётно.

Так как обе функции являются чётными, то и их произведение чётно.

Область определения – вся числовая ось. Производим подстановку:

– функция четная.

Урок по теме «Четные и нечетные функции. Свойства графиков четной и нечетной функции». 9-й класс

Разделы: Математика

Класс: 9

Цель урока:

  • рассмотреть свойство графиков чётной и нечётной функции и научиться применять изученные свойства для построения графиков чётной и нечётной функции.

Форма урока: лекция; практикум.

Методы: наглядно – иллюстративный; медиа – лекция; проверочная работа.

Средства:

  • компьютер;
  • обучающий диск “Уроки алгебры Кирилла и Мефодия. 9 класс”.
  • виртуальная школа Кирилла и Мефодия [4];
  • интерактивная доска;
  • дидактический материал для проверки домашней работы (карточки);
  • дидактический материал для проведения проверочной работы (тест);

Используемые технологии:

  • информационно – компьютерная технология с использованием электронного учебника;
  • информационно – компьютерная технология с использованием интерактивной доски;

1. Организационный момент.

2. Актуализация целей урока.

Цель нашего урока — рассмотреть свойство графиков чётной и нечётной функций и научиться применять изученные свойства при построении графиков.

В конце урока — небольшая проверочная работа по теме “Чётные и нечётные функции”.

3. Проверка домашнего задания и повторение вопросов теории.

1) 1 ученик – сформулировать определение чётной и нечётной функций. Записать на доске необходимые равенства. (Готовится у доски).

2) 2 ученика решают задания по карточкам из домашней работы: № 486 (б) и № 484 (г) (готовят на доске для проверки).

1. Дайте определения следующим понятиям:

б) Область определения функции. Найти область определения данных функций. Будет ли она симметрична относительно нуля?

Что означает высказывание “область определения функции симметрична относительно нуля”?

в) Область значений функции.

д) Возрастание, убывание функции.

е) Чётность, нечётность (формулирует ученик, который готовился у доски).

2. Является ли функция чётной, нечётной или ни чётной, ни нечётной?

3. Может ли быть чётной или нечётной функция, областью определения которой является:

а) промежуток [ — 2; 5 ] ;

б) промежуток ( — 7; 7 );

в) объединение промежутков [ — 10; — 2 ] U [ 2; 10 ] .

4. а) Функция f – чётная, f (3) = 25. Найти f (- 3).

б) Функция f – нечётная, f (- 8) = 71. Найти f (8).

4. Изучение нового материала.

Особое место среди функций занимают чётные и нечётные функции. Их графики удобно строить, зная свойство их графиков.

Работа с учебником [1]. С помощью рис. 52 учебника из п.21 учитель вместе с классом выясняет свойство графика чётной функции и формулирует его .

Доказательство данного свойства рассматривается с помощью медиа — лекции. ([4] Диск “Виртуальная школа Кирилла и Мефодия. “Уроки алгебры Кирилла и Мефодия. 9 класс”. Урок 13 “Чётные и нечётные функции”)

Обращается внимание учащихся на то, как практически строить симметричный относительно оси ординат график.

На одном из следующих чертежей изображён график чётной функции. Укажите этот чертёж. (Слайд на интерактивной доске).

Далее рассматривается свойство графика нечётной функции.

Работа с учебником [1]. С помощью рис. 53 учебника из п.21 учитель вместе с классом выясняет свойство графика нечётной функции и формулирует его.

На одном из следующих чертежей изображён график нечётной функции. Укажите этот чертёж. (Слайд на интерактивной доске).

Обращается внимание учащихся, что с примерами чётных и нечётных функций они уже встречались в курсе алгебры. Одно из домашних заданий на следующий урок будет: вспомнить изученные функции, какие из них являются чётными, какие – нечётными.

5. Закрепление изученного. Работа с учебником и интерактивной доской.

№ 487. Учащиеся выполняют самостоятельно в тетрадях, учитель фронтально проверяет. Затем 2 учащихся выполняют на интерактивной доске задание для проверки, используя маркеры разных цветов. При проверке учесть: D(f) = [ -3; 3].

№ 644 (а). Обсуждение подходов к выполнению задания:

1) построить график для х 0. Графиком будет являться луч с началом в точке с абсциссой х = 0.

2) достроить график симметрично оси ординат. Начало луча точка (0;-1) будет симметрична сама себе. Точка (х;у) будет симметрична точке (-х;у).

6. Проверочная работа (тест). (8 минут).

Работа на карточках. Пояснения к работе:

Часть заданий в виде теста. В заданиях 1, 2 необходимо выбрать график функции, удовлетворяющий определённому условию. Необходимо обвести номер графика и поставить крестик в нужной клеточке таблицы после заданий. Будьте внимательны! В заданиях 1 и 2 только один правильный ответ!

В 3 задании необходимо определить вид функции, пользуясь определением чётной и нечётной функции. В 4 задании – достроить график функции, которая является либо чётной, либо нечётной.

Во время выполнения проверочной работы учащимися учитель фронтально проверяет домашнюю работу.

После сдачи карточек проверка работы с помощью интерактивной доски. (Слайды заготовлены заранее).

Оценки за работу сообщаются учащимся на следующем уроке.

Текст проверочной работы приведён после пункта “Задание на дом”.

7. Подведение итогов урока.

Повторение изученных свойств, выставление оценок.

п. 21, № 489, 644 (б), 645 (б). Дополнительное задание: выписать известные чётные и нечётные функции, построить их графики.

Проверочная работа. 1 вариант.

На рисунке 3 укажите график чётной функции.

На рисунке 4 укажите график нечётной функции?

Определить, является ли функция чётной или нечётной.

а) f (x) = x 8 – 3 x 4 . Решение:_____________________________________________________

б) f (x) = 12/х. Решение:______________________________________________________

4. Достроить график функции f (x) на промежутке (- ?; 0), зная, что f (x) – нечётная функция и на промежутке [0 ; +?) её график имеет вид, изображённой на рисунке 5:

Таблица ответов для заданий №1 и №2. Поставь крестик в клетке, содержащей верный ответ. Будьте внимательны! В заданиях только один правильный ответ!

Четность и нечетность функции. Период функции. Экстремумы функции

Содержание

Способы задания функции

Пусть функция задается формулой: y=2x^<2>-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 cdot (-0,5)^<2>-3=-2,5 .

Взяв любое значение, принимаемое аргументом x в формуле y=2x^<2>-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

D(f)=(-infty ; +infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 cdot (-x)^<3>-7 cdot (-x)^<7>= -3x^<3>+7x^<7>= -(3x^<3>-7x^<7>)= -f(x) .

Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.

Периодическая функция

Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T neq 0 .

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

Промежутки, где функция положительная, то есть f(x) > 0 — отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_<1>; x_<2>) cup (x_<3>; +infty )

Промежутки, где функция отрицательная, то есть f(x) 0 , для которого выполняется неравенство left | f(x) right | neq K для любого x in X .

Пример ограниченной функции: y=sin x ограничена на всей числовой оси, так как left | sin x right | neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) > y(x_<2>) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) 0 четная функция возрастает, то убывает она при x 0 четная функция убывает, то возрастает она при x 0 нечетная функция возрастает, то возрастает она и при x 0 , то она будет убывать и при x f(x_<0>) . y_ — обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_ <0>, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_ <0>), и для них тогда будет выполняется неравенство f(x)

Ссылка на основную публикацию
Adblock
detector
×
×