1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое разложение многочленов

Многочлены. Разложение многочлена на множители: способы, примеры

Понятия «многочлен» и «разложение многочлена на множители» по алгебре встречаются очень часто, ведь их необходимо знать, чтобы с легкостью производить вычисления c большими многозначными числами. В этой статье будет описано несколько способов разложения. Все они достаточно просты в применении, стоит лишь правильно подобрать нужный в каждом конкретном случае.

Понятие многочлена

Многочлен является суммой одночленов, то есть выражений, содержащих только операцию умножения.

Например, 2 * x * y – это одночлен, а вот 2 * x * y + 25 — многочлен, который состоит из 2 одночленов: 2 * x * y и 25. Такие многочлены называет двучленами.

Иногда для удобства решения примеров с многозначными значениями выражение необходимо преобразовать, например, разложить на некоторое количество множителей, то есть чисел или выражений, между которыми производится действие умножения. Есть ряд способов разложения многочлена на множители. Стоит рассмотреть их начиная с самого примитивного, который применяют еще в начальных классах.

Группировка (запись в общем виде)

Формула разложения многочлена на множители способом группировки в общем виде выглядит таким образом:

ac + bd + bc + ad = (ac + bc) + (ad + bd)

Необходимо сгруппировать одночлены так, чтобы в каждой группе появился общий множитель. В первой скобке это множитель с, а во второй – d. Это нужно сделать для того, чтобы затем вынести его за скобку, тем самым упростив вычисления.

Алгоритм разложения на конкретном примере

Простейший пример разложения многочлена на множители способом группировки приведен ниже:

10ас + 14bc – 25a — 35b = (10ас – 25а) + (14bc — 35b)

В первую скобку нужно взять слагаемые с множителем а, который и будет общим, а во вторую – со множителем b. Обратите внимание на знаки + и – в готовом выражении. Мы ставим перед одночленом тот знак, который был в начальном выражении. То есть нужно работать не с выражением 25а, а с выражением -25. Знак минус как бы «приклеить» к стоящему за ним выражению и всегда учитывать его при вычислениях.

На следующем шаге нужно вынести множитель, который является общим, за скобку. Именно для этого и делается группировка. Вынести за скобку – значит выписать перед скобкой (опуская знак умножения) все те множители, которые с точностью повторяются во всех слагаемых, которые находятся в скобке. Если в скобке не 2, а 3 слагаемых и больше, общий множитель должен содержаться в каждом из них, иначе его нельзя вынести за скобку.

В нашем случае — только по 2 слагаемых в скобках. Общий множитель сразу виден. В первой скобке – это а, во второй – b. Здесь нужно обратить внимание на цифровые коэффициенты. В первой скобке оба коэффициента (10 и 25) кратны 5. Это значит, что можно вынести за скобку не только а, но и 5а. Перед скобкой выписать 5а, а затем каждое из слагаемых в скобках поделить на общий множитель, который был вынесен, и также записать частное в скобках, не забывая о знаках + и — Со второй скобкой поступить также, вынести 7b, так как и 14 и 35 кратно 7.

10ас + 14bc – 25a — 35b = (10ас – 25а) + (14bc — 35b) = 5а(2c — 5) + 7b(2c – 5).

Получилось 2 слагаемых: 5а(2c — 5) и 7b(2c – 5). Каждое из них содержит общий множитель (все выражение в скобках здесь совпадает, значит, является общим множителем): 2с – 5. Его тоже нужно вынести за скобку, то есть во второй скобке остаются слагаемые 5а и 7b:

5а(2c — 5) + 7b(2c – 5) = (2c – 5)*(5а + 7b).

Итак, полное выражение:

10ас + 14bc – 25a — 35b = (10ас – 25а) + (14bc — 35b) = 5а(2c — 5) + 7b(2c – 5) = (2c – 5)*(5а + 7b).

Таким образом, многочлен 10ас + 14bc – 25a — 35b раскладываается на 2 множителя: (2c – 5) и (5а + 7b). Знак умножения между ними при записи можно опускать

Иногда встречаются выражения такого типа: 5а 2 + 50а 3 , здесь можно вынести за скобку не только а или 5а, а даже 5а 2 . Всегда нужно стараться вынести максимально большой общий множитель за скобку. В нашем случае, если разделить каждое слагаемое на общий множитель, то получается:

5а 2 / 5а 2 = 1; 50а 3 / 5а 2 = 10а (при вычислении частного нескольких степеней с равными основаниями основание сохраняется, а показатель степени вычитается). Таким образом, в скобке остается единица (ни в коем случае не забывайте писать единицу, если выносите за скобку целиком одно из слагаемых) и частное от деления: 10а. Получается, что:

5а 2 + 50а 3 = 5а 2 (1 + 10а)

Формулы квадратов

Для удобства вычислений были выведены несколько формул. Они называются формулами сокращенного умножения и используются довольно часто. Эти формулы помогают разложить на множители многочлены, содержащие степени. Это еще один действенный способ разложения на множители. Итак, вот они:

  • a 2 + 2ab + b 2 = (a + b) 2 — формула, получившая название «квадрат суммы», так как в результате разложения в квадрат берется сумма чисел, заключенная в скобки, то есть значение этой суммы умножается само на себя 2 раза, а значит, является множителем.
  • a 2 + 2ab — b 2 = (a — b)2 — формула квадрата разности, она аналогична предыдущей. В результате получается разность, заключенная в скобки, содержащаяся в квадратной степени.
  • a 2 — b 2 = (a + b)(а — b) — это формула разности квадратов, так как изначально многочлен состоит из 2 квадратов чисел или выражений, между которыми производится вычитание. Пожалуй, из трех названных она используется чаще всего.

Примеры на вычисления по формулам квадратов

Вычисления по ним производятся достаточно просто. Например:

  1. 25x 2 + 20xy + 4y2 — используем формулу «квадрат суммы».
  2. 25x 2 является квадратом выражения 5х. 20ху — удвоенное произведение 2*(5х*2у), а 4y 2 — это квадрат 2у.
  3. Таким образом, 25x 2 + 20xy + 4y 2 = (5x + 2у) 2 = (5x + 2у)(5x + 2у). Данный многочлен раскладывается на 2 множителя (множители одинаковые, поэтому записывается в виде выражения с квадратной степенью).

Действия по формуле квадрата разности производятся аналогично этим. Остается формула разность квадратов. Примеры на эту формулу очень легко определить и найти среди других выражений. Например:

  • 25а 2 — 400 = (5а — 20)(5а + 20). Так как 25а 2 = (5а) 2 , а 400 = 20 2
  • 36х 2 — 25у 2 = (6х — 5у) (6х + 5у). Так как 36х 2 = (6х) 2 , а 25у 2 = (5у 2 )
  • с 2 — 169b 2 = (с — 13b)(c + 13b). Так как 169b 2 = (13b) 2

Важно, чтобы каждое из слагаемых являлось квадратом какого-либо выражения. Тогда этот многочлен подлежит разложению на множители по формуле разности квадратов. Для этого не обязательно, чтобы над числом стояла именно вторая степень. Встречаются многочлены, содежащие большие степени, но все равно подходящие к этим формулам.

a 8 +10a 4 +25 = (a 4 ) 2 + 2*a 4 *5 + 5 2 = (a 4 +5) 2

В данном примере а 8 можно представить как (a 4 ) 2 , то есть квадрат некого выражения. 25 — это 5 2 , а 10а 4 это удвоенное произведение слагаемых 2*a 4 *5. То есть данное выражение, несмотря на наличие степеней с большими показателями, можно разложить на 2 множителя, чтобы в последствии работать с ними.

Формулы кубов

Такие же формулы существуют для разложения на множители многочленов, содержащих кубы. Они немного посложнее тех, что с квадратами:

  • a 3 + b 3 = (а + b)(a 2 — ab + b 2 ) — эту формулу называют суммой кубов, так как в начальном виде многочлен представляет собой сумму двух выражений или чисел, заключенных в куб.
  • a 3 — b 3 = (а — b)(a 2 + ab + b 2 ) — формула, идентичная предыдущей, обозначена как разность кубов.
  • a 3 + 3a 2 b + 3ab 2 + b 3 = (a + b)3 — куб суммы, в результате вычислений получается сумма чисел или выражений, заключенная в скобки и умноженная сама на себя 3 раза, то есть находящаяся в кубе
  • a 3 — 3a 2 b + 3ab 2 — b 3 = (a — b) 3 — формула, составленная по аналогии предыдущей с изменением лишь некоторых знаков математических операций (плюс и минус), имеет название «куб разности».

Последние две формулы практически не испольуются с целью разложения многочлена на множители, так как они сложны, и достаточно редко встречаются многочлены, полностью соответствующие именно такому строению, чтобы их можно было разложить по этим формулам. Но их все равно нужно знать, так как они потребуются при действиях в обратном направлении — при раскрытии скобок.

Примеры на формулы кубов

Рассмотрим пример: 64a 3 − 8b 3 = (4a) 3 − (2b) 3 = (4a − 2b)((4a) 2 + 4a*2b + (2b) 2 ) = (4a−2b)(16a 2 + 8ab + 4b 2 ).

Здесь взяты достаточно простые числа, поэтому сразу можно увидеть, что 64а 3 — это (4а) 3 , а 8b 3 — это (2b) 3 . Таким образом, этот многочлен раскладывается по формуле разность кубов на 2 множителя. Действия по формуле суммы кубов производятся по аналогии.

Важно понимать, что далеко не все многочлены подлежат разложению хотя бы одним из способов. Но есть такие выражения, которые содержат большие степени, чем квадрат или куб, но их также можно разложить по формуам сокращенного умножения. Например: x 12 + 125y 3 =(x 4 ) 3 +(5y) 3 =(x 4 +5y)*((x 4 ) 2 − x 4 *5y+(5y) 2 )=(x 4 + 5y)(x 8 − 5x 4 y + 25y 2 ).

В этом примере содержится аж 12 степень. Но даже его возможно разложить на множители по формуле суммы кубов. Для этого нужно представить х 12 как (x 4 ) 3 , то есть как куб какого-либо выражения. Теперь в формулу вместо а нужно подставлять именно его. Ну а выражение 125у 3 — это куб 5у. Далее следует составить произведение по формуле и произвести вычисления.

На первых порах или в случае возникших сомнений, вы всегда можете произвести проверку обратным умножением. Вам нужно лишь раскрыть скобки в получившемся выражении и выполнить действия с подобными слагаемыми. Этот метод относится ко всем перечисленным способам сокращения: как к работе с общим множителем и группировке, так и к действиям по формулам кубов и квадратных степеней.

Разложение многочлена на множители

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей ( x — x i ) , i = 1 , 2 , … , n , тогда P n ( x ) = a n ( x — x n ) ( x — x n — 1 ) · . . . · ( x — x 1 ) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.

Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n ( x ) = a n ( x — x n ) ( x — x n — 1 ) · . . . · ( x — x 3 ) x 2 + p x + q , где x 2 + p x + q = ( x — x 1 ) ( x — x 2 ) .

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 на ( x — s ) , тогда получаем остаток, который равен многочлену в точке s , тогда получим

P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = ( x — s ) · Q n — 1 ( x ) + P n ( s ) , где Q n — 1 ( x ) является многочленом со степенью n — 1 .

Следствие из теоремы Безу

Когда корень многочлена P n ( x ) считается s , тогда P n x = a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = ( x — s ) · Q n — 1 ( x ) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) , где x 1 и x 2 — это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Произвести разложение квадратного трехчлена на множители.

Необходимо найти корни уравнения 4 x 2 — 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = ( — 5 ) 2 — 4 · 4 · 1 = 9 . Отсюда имеем, что

x 1 = 5 — 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1

Отсюда получаем, что 4 x 2 — 5 x + 1 = 4 x — 1 4 x — 1 .

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4 x — 1 4 x — 1 = 4 x 2 — x — 1 4 x + 1 4 = 4 x 2 — 5 x + 1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Произвести разложение на множители квадратный трехчлен вида 3 x 2 — 7 x — 11 .

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 — 7 x — 11 = 0 .

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3 x 2 — 7 x — 11 = 0 D = ( — 7 ) 2 — 4 · 3 · ( — 11 ) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 — D 2 · 3 = 7 — 181 6

Отсюда получаем, что 3 x 2 — 7 x — 11 = 3 x — 7 + 181 6 x — 7 — 181 6 .

Произвести разложение многочлена 2 x 2 + 1 на множители.

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

2 x 2 + 1 = 0 x 2 = — 1 2 x 1 = — 1 2 = 1 2 · i x 2 = — 1 2 = — 1 2 · i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x — 1 2 · i x + 1 2 · i .

Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

x 2 + 1 3 x + 1 = 0 D = 1 3 2 — 4 · 1 · 1 = — 35 9 x 1 = — 1 3 + D 2 · 1 = — 1 3 + 35 3 · i 2 = — 1 + 35 · i 6 = — 1 6 + 35 6 · i x 2 = — 1 3 — D 2 · 1 = — 1 3 — 35 3 · i 2 = — 1 — 35 · i 6 = — 1 6 — 35 6 · i

Получив корни, запишем

x 2 + 1 3 x + 1 = x — — 1 6 + 35 6 · i x — — 1 6 — 35 6 · i = = x + 1 6 — 35 6 · i x + 1 6 + 35 6 · i

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на ( x — x 1 ) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n ( x ) = a n x n + a n — 1 x n — 1 + . . . + a 1 x .

Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n ( x ) = a n x n + a n — 1 x n — 1 + . . . + a 1 x = = x ( a n x n — 1 + a n — 1 x n — 2 + . . . + a 1 )

Данный способ считается вынесением общего множителя за скобки.

Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 — x на множители.

Видим, что x 1 = 0 — это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4 x 3 + 8 x 2 — x = x ( 4 x 2 + 8 x — 1 )

Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x — 1 . Найдем дискриминант и корни:

D = 8 2 — 4 · 4 · ( — 1 ) = 80 x 1 = — 8 + D 2 · 4 = — 1 + 5 2 x 2 = — 8 — D 2 · 4 = — 1 — 5 2

Тогда следует, что

4 x 3 + 8 x 2 — x = x 4 x 2 + 8 x — 1 = = 4 x x — — 1 + 5 2 x — — 1 — 5 2 = = 4 x x + 1 — 5 2 x + 1 + 5 2

Разложение на множители многочлена с рациональными корнями

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n ( x ) = x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Произвести разложение выражения f ( x ) = x 4 + 3 x 3 — x 2 — 9 x — 18 .

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа — 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Способ группировки

Кроме вынесения общего множителя за скобки существует еще один способ разложения многочлена на множители — способ группировки.

Этот способ разложения на множители считается более сложным, поэтому перед его изучением, убедитесь, что вы уверенно выносите общий множитель за скобки.

Чтобы разложить многочлен на множители способом группировки, необходимо сделать следующее.

  1. Подчеркнуть повторяющиеся буквы и записать друг за другом одночлены с одинаковыми буквенными множителями.
  2. Вынести общий множитель за скобки у каждой группы одночленов.
  3. Вынести полученный общий многочлен за скобки.

Рассмотрим пример разложения многочлена на множители способом группировки.

  1. Подчеркнем повторяющиеся буквенные множители в одночленах. У нас получится две группы одночленов с повторяющимися буквенными множителями.
  2. Вынесем общий множитель за скобки у каждой группы одночленов. П роверим, верно ли мы вынесли общий множитель за скобки. Для этого раскроем скобки обратно. М ы получили исходный многочлен, значит, мы правильно вынесли общий множитель за скобки.
  3. Теперь в полученном результате вынесем общий многочлен « (a + b) » за скобки.

Примеры способа группировки

Группировать одночлены можно по-разному. При правильной группировке должен появиться общий многочлен .

Рассмотрим пример. Требуется разложить многочлен на множители, используя способ группировки.

Первый способ

Обратим внимание, что в двух одночленах повторяется « y 2 » и « z 2 ». Подчеркнем повторяющиеся одночлены и запишем их друг за другом. Затем вынесем общий множитель у каждой группы одночленов.

48x z 2 + 32x y 2 − 15 z 2 − 10 y 2 = 48x z 2 − 15 z 2 + 32x y 2 − 10 y 2 = 3z 2 (16x − 5) + 2y 2 (16x − 5) =
= (16x − 5)(3z 2 + 2y 2 )

Второй способ

Запишем пример еще раз. Теперь обратим внимание, что в первых двух одночленах повторяется « x ». Подчеркнем повторяющиеся одночлены. Вынесем общий множитель у каждой группы одночленов.

48 x z 2 + 32 x y 2 − 15z 2 − 10y 2 = 16x(3z 2 + 2y 2 ) − 5(3z 2 + 2y 2 ) = (3z 2 + 2y 2 )(16x − 5)

В итоге получился такой же ответ, как и при первом способе.

Рассмотрим еще один пример разложения многочлена способом группировки.

    4q(p − 1) + p − 1 = 4q(p − 1) + (p − 1) = 4q(p − 1) + 1 · (p − 1) = (p − 1)(4q + 1)
    В этом примере следует отметить, что для вынесения общего многочлена мы добавили умножение на 1 к многочлену (p − 1) , что не изменяет результат умножения.
    Это помогает понять, что останется во второй скобке после вынесения общего многочлена.

Смена знаков в скобках

Иногда для вынесения общего многочлена требуется сменить все знаки одночленов в скобках на противоположные.

Для этого за скобки выносится знак « − », а в скобках у всех одночленов меняются знаки на противоположные.

2ab 2 − 3x + 1 = −( − 2ab 2 + 3x − 1)

Рассмотрим пример способа группировки, где для вынесения общего многочлена, нам потрубуется выполнить смену знаков в скобках.

  • 2m(m − n) + n − m = − 2m( − m + n) + (n − m) = −2m(n − m) + 1 · (n − m) =
    = (n − m)(−2m + 1)

Разложение на множители алгебраического многочлена степени n

Разложение на множители алгебраического многочлена степени n

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где — являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

; ; ;

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета — это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 — 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p — делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом — «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

И так далее. Последняя ячейка второй строки является остатком деления многочлена на двучлен. В случае если деление происходит на корень уравнения, то остаток должен быть равен «0».

Таким образом, исходный многочлен раскладывается на множители:

П.2. Далее раскладывается на множители многочлен третьей степени (кубическое выражение).

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители

Формулы, используемые для разложения на слагаемые

Деление формул на две группы выполнено условно для удобства запоминания, а любые равенства справедливы как при чтении их слева направо, так и справа налево.

Пример 4.1. Необходимо разложить многочлен на множители

П.1. Воспользуемся формулой сокращенного умножения для разности квадратов и преобразуем исходное выражение к следующему виду:

П.2. Далее решаются квадратные уравнения и исходный многочлен раскладывается на множители.

Пример 4.2. Необходимо разложить многочлен четвертой степени на множители

П.1. Воспользуемся формулой сокращенного умножения для разности квадратов и преобразуем исходное выражение к следующему виду:

П.2. Далее решаются квадратные уравнения и исходный многочлен раскладывается на множители.

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Примеры разложения многочленов на множители

1. Примеры с решением квадратного уравнения

Пример 1.1

Разложить многочлен на множители:
x 4 + x 3 – 6 x 2 .

Выносим x 2 за скобки:
.
Решаем квадратное уравнение x 2 + x – 6 = 0 :
.
Корни уравнения:
, .

Отсюда получаем разложение многочлена на множители:
.

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 – 2 x 4 + 10 x 3 .

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 – 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 – 20 .

Применим формулы:
a 2 + 2 ab + b 2 = ( a + b ) 2 ;
a 2 – b 2 = ( a – b )( a + b ) .

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Применим формулы:
a 2 + 2 ab + b 2 = ( a + b ) 2 ;
a 2 – b 2 = ( a – b )( a + b ) :

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = – 1 . Делим многочлен на x – (–1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 6 (члена без x ). То есть целый корень может быть одним из чисел:
–6, –3, –2, –1, 1, 2, 3, 6 .
Подставляем поочередно эти значения:
(–6) 3 – 6·(–6) 2 + 11·(–6) – 6 = –504 ;
(–3) 3 – 6·(–3) 2 + 11·(–3) – 6 = –120 ;
(–2) 3 – 6·(–2) 2 + 11·(–2) – 6 = –60 ;
(–1) 3 – 6·(–1) 2 + 11·(–1) – 6 = –24 ;
1 3 – 6·1 2 + 11·1 – 6 = 0 ;
2 3 – 6·2 2 + 11·2 – 6 = 0 ;
3 3 – 6·3 2 + 11·3 – 6 = 0 ;
6 3 – 6·6 2 + 11·6 – 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен – третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Пример 3.2

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
–2, –1, 1, 2 .
Подставляем поочередно эти значения:
(–2) 4 + 2·(–2) 3 + 3·(–2) 3 + 4·(–2) + 2 = 6 ;
(–1) 4 + 2·(–1) 3 + 3·(–1) 3 + 4·(–1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .

Итак, мы нашли один корень:
x 1 = –1 .
Делим многочлен на x – x 1 = x – (–1) = x + 1 :

Тогда,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, –1, –2 .
Подставим x = –1 :
.

Итак, мы нашли еще один корень x 2 = –1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид:
.

Автор: Олег Одинцов . Опубликовано: 18-06-2015

Что такое разложение многочленов

Ключевые слова: множители, разложение на множители, вынесение общего множителя, формулы сокращенного умножения, способ группировки, метод выделения полного квадрата.

Тождественное преобразование, приводящее к произведению нескольких множителей — многочленов или одночленов, называют разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

  • Вынесение общего множителя за скобки. Это преобразование является непосредственным следствием распределительного закона ac + bc = c(a + b)
  • Пример. Разложить многочлен на множители 12 y 3 – 20 y 2 . Решение. Имеем: 12 y 3 – 20 y 2 = 4 y 2 · 3 y – 4 y 2 · 5 = 4 y 2 (3 y – 5). Ответ. 4 y 2 (3 y – 5).
  • Использование формул сокращенного умножения. Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.
  • Пример. Разложить на множители многочлен x 4 – 1. Решение. Имеем: x 4 – 1 = ( x 2 ) 2 – 1 2 = ( x 2 – 1)( x 2 + 1) = ( x 2 – 1 2 )( x 2 + 1) = ( x + 1)( x – 1)( x 2 + 1). Ответ. ( x + 1)( x – 1)( x 2 + 1).
  • Способ группировки. Этот способ заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения.
  • Пример. Разложить на множители многочлен x 3 – 3 x 2 y – 4 xy + 12 y 2 . Решение. Сгруппируем слагаемые следующим образом:
    x 3 – 3 x 2 y – 4 xy + 12 y 2 = ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ). В первой группе вынесем за скобку общий множитель x 2 , а во второй − 4 y . Получаем:
    ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ) = x 2 ( x – 3 y ) – 4 y ( x – 3 y ). Теперь общий множитель ( x – 3 y ) также можно вынести за скобки:
    x 2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x 2 – 4 y ). Ответ. ( x – 3 y )( x 2 – 4 y ).
  • Способ выделения полного квадрата. Метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители. Суть его состоит в выделении полного квадрата и последующего применения формулы разности квадратов.
  • Пример. Разложить на множители многочлен x 4 + 4 x 2 – 1. Решение. Имеем $$x^ <4>+4x^<2>— 1 = x^ <4>+2 cdot 2x^ <2>+ 4 — 4 — 1 = (x^ <2>+ 2)^ <2>— 5 = (x^ <2>+ 2 -sqrt<5>)(x^ <2>+ 2 -sqrt<5>)$$.
  1. Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
  2. Любой многочлен третьей степени имеет хотя бы один действительный корень, а потому разлагается в произведение линейного и квадратичного сомножителя.
  3. Любой многочлен четвёртой степени разлагается в произведение многочленов второй степени.

Пример. Разложить на множители многочлен 3 x 3 – x 2 – 3 x + 1.

Решение. Поскольку многочлен третьей степени разлагается в произведение линейного и квадратичного сомножителей, то будем искать многочлены x – p и ax 2 + bx + c такие, что справедливо равенство 3 x 3 – x 2 – 3 x + 1 = ( x – p )( ax 2 + bx + c ) = ax 3 + ( b – ap ) x 2 + ( c – bp ) x – pc . Приравнивая коэффициенты при одинаковых степенях в левой и правой частях этого равенства, получаем систему четырех уравнений для определения четырех неизвестных коэффициентов:

Решая эту систему, получаем: a = 3, p = –1, b = 2, c = –1. Итак, многочлен 3 x 3 – x 2 – 3 x + 1 разлагается на множители: 3 x 3 – x 2 – 3 x + 1 = ( x – 1)(3 x 2 + 2 x – 1).

Ссылка на основную публикацию
Adblock
detector