0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Факторы влияющие на скорость горения

Скорость реакции, ее зависимость от различных факторов

Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

На скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ;
  • концентрация реагирующих веществ;
  • поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях);
  • температура;
  • действие катализаторов.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние концентрации реагирующих веществ на скорость реакции

При повышении концентрации реагирующих веществ скорость реакции возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

К увеличению скорости реакции протекающей в газовой фазе приведет повышение давления или уменьшение объема, занимаемого смесью.

На основе экспериментальных данных в 1867 г. норвежские учёные К. Гульдберг, и П Вааге и независимо от них в 1865 г. русский учёный Н.И. Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ-

Закон действующих масс (ЗДМ) :
Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции. («действующая масса» – синоним современного понятия «концентрация»)

аА + bВ = cС +dD, где k – константа скорости реакции

ЗДМ выполняется только для элементарных химических реакций, протекающих в одну стадию. Если реакция протекает последовательно через несколько стадий, то суммарная скорость всего процесса определяется самой медленной его частью.

Выражения для скоростей различных типов реакций

ЗДМ относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнение ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k.

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Скорость гетерогенных реакций

  • Зависит от площади поверхности соприкосновения веществ, т.е. от степени измельчения веществ, полноты смешивания реагентов.
  • Пример — горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится.
  • Пирофорное железо высыпают на лист фильтровальной бумаги. За время падения частицы железа раскаляются и поджигают бумагу.

Влияние температуры на скорость реакции

В XIX веке голландский ученый Вант-Гофф опытным путем обнаружил, что при повышении температуры на 10 о С скорости многих реакций возрастают в 2-4 раза.

Правило Вант-Гоффа

При повышении температуры на каждые 10 ◦ С скорость реакции увеличивается в 2-4 раза.

Здесь γ (греческая буква «гамма») — так называемый температурный коэффициент или коэффициент Вант-Гоффа, принимает значения от 2 до 4.

Для каждой конкретной реакции температурный коэффициент определяется опытным путем. Он показывает, во сколько именно раз возрастает скорость данной химической реакции (и ее константа скорости) при повышении температуры на каждые 10 градусов.

Правило Вант-Гоффа используется для приближенной оценки изменения константы скорости реакции при повышении или понижении температуры. Более точное соотношение между константой скорости и температурой установил шведский химик Сванте Аррениус:

Чем больше Ea конкретной реакции, тем меньше (при данной температуре) будет константа скорости k (и скорость) этой реакции. Повышение Т приводит к увеличению константы скорости, это объясняется тем, что повышение температуры приводит к быстрому увеличению числа «энергичных» молекул, способных преодолевать активационный барьер Ea.

Влияние катализатора на скорость реакции

Можно изменить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации.

Катализаторы – это вещества, участвующие в химической реакции и увеличивающие ее скорость, но по окончании реакции остающиеся неизменными качественно и количественно.

Ингибиторы – вещества, замедляющие химические реакции.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом.

Влияние различных факторов на скорость химических реакций при горении

Зависимость скорости реакции горения от концентрации реагирующих веществ можно представить выражением

где: k – константа скорости реакции,

Сгор — концентрация горючего вещества, кмоль/м 3 ,

Сок – концентрация окислителя, кмоль/м 3 ,

x,y – порядки реакции по горючему и окислителю соответственно.

Суммарное уравнение реакции, как правило, не отражает истинного механизма протекания реакции горения, которая является многостадийной и, зачастую цепной, поэтому порядки реакции в уравнении далеко не всегда совпадают с величиной стехиометрических коэффициентов в уравнении.

Скорость реакции горения зависит от температуры:

,

А – фактор эффективности соударений;

е – основание натурального логарифма;

Еа – энергия активации, кДж/кмоль;

R – универсальная газовая постоянная, R=8,314 кДж/(К.кмоль);

Т – температура, К.

Это уравнение является выражением закона Аррениуса о зависимости скорости химических реакций от температуры. В упрощенном виде для узкого интервала температур можно пользоваться правилом Вант-Гоффа:

скорость химической реакции возрастает в 2-4 раза при повышении температуры на каждые 10 0

Таким образом, скорость химической реакции окисления горючего вещества при горении резко возрастает с повышением температуры, причем тем больше, чем ниже энергия активации.

Основными факторами, влияющими на скорость химической реакции при горении являются:

· Концентрация реагирующих веществ (максимальная при стехиометрической концентрации)

· Температура (чем выше температура, тем выше скорость реакции)

· Давление (с увеличением давления – скорость увеличивается)

· Наличие катализаторов или ингибиторов

Как отмечалось выше, химические реакции окисления высокоэкзотермичны, поэтому горение сопровождается выделением большого количества теплоты и следовательно протекает при высокой температуре. Например, температура горения древесины 700-800 0 С, нефтепродуктов – еще выше – 1300-1500 0 С.

При низких давлениях могут возникать так называемые холодные пламена. Самоускорение цепной химической реакции горения при этом происходит в изотермическом режиме. Это происходит при определенном составе горючей смеси и определенном состоянии среды. Изотермическое самоускорение характерно для смесей с достаточно высокой концентрацией активных, но достаточно стабильных промежуточных продуктов, что приводит к уменьшению разветвления цепей, а следовательно и к уменьшению выделения теплоты, которая за счет теплоотвода рассеивается в окружающую среду и частично затрачивается на нагрев стабильных промежуточных продуктов. Возникает свечение, представляющее собой хемилюминесценцию, а не тепловое излучение нагретых продуктов горения, которое имеет место в горячих пламенах.

Кроме того, на возникновение холодных пламен большое влияние оказывают стенки сосуда, в котором происходит горение. Они оказывают каталитическое влияние на процесс уничтожения активных центров, т.е. происходит гетерогенный обрыв цепи. Интенсивность этого процесса определяется скоростью диффузии активных центров к стенкам сосуда. Понижение давления способствует этому процессу. Понижение давления может не только привести к образованию холодных пламен вместо горячих, но в определенных условиях (например, в узких сосудах) даже к полному прекращению горения.

Как отмечалось выше, химические превращения в процессе горения приводят к возникновению различных физических процессов: переносу тепла за счет конвекции, теплопроводности и излучения, переноса реагирующих веществ и др.

Таким образом, горение можно характеризовать как сложный самоподдерживающийся физико-химический процесс, для которого характерны три признака: химическое превращение, выделение тепла и излучение (в том числе чаще всего и световое, т.е. в видимой части спектра).

Факторы, влияющие на скорость выгорания жидкостей

Влияние природы жидкости. На скорость выгорания оказывают влияние интенсивность теплового потока, поступающего от пламени к зеркалу жидкости и теплофизические параметры горючего: температура кипения, теплоемкость и теплота испарения. Отношение скоростей выгорания наиболее быстрокипящих жидкостей к наиболее медленно горящим относительно невелико и составляет 3,0-4,5.

Влияние диаметра резервуара.Зависи­мость скорости выгорания от диаметра резервуара для всех горючих жид­костей одинакова. При увеличении диа­метра скорость выгорания вначале быстро снижается, затем скорость снижения уменьшается. Далее наблюдается возрастание скорости выгора­ния с увеличением диаметра резервуара и последующее приближение скорости выгорания к предельному значению. Этот предел достигается при диаметрах порядка 1,2-1,3 м.

Таким образом, вся область рассматриваемой зависимости делится на три части, в каждой из которых наблюдаемая зависимость определяет­ся особенностями процесса выгорания. Уменьшение скорости выгорания с ростом диаметра на первом участке кривой объясняется условиями под­вода тепла от факела пламени к поверхности жидкости. Количество тепла, поступающего излучением, пропорционально площади поверхности жид­кости, а количество тепла, поступающего теплопроводностью за счет на­грева стенок сосуда, пропорционально периметру сосуда. При этом доля тепла, передаваемого жидкости стенками, к теплу, поставляемому лучи­стым потоком, будет пропорциональна отношению периметра сосуда к площади поверхности жидкости, т. е. к площади поперечного сечения со­суда. Таким образом, с ростом диаметра теплоподвод от стенок сосуда снижается, и скорость выгорания становится меньше. Сказанное справедливо для ламинарного процесса выгорания.

При увеличении диаметра сосуда свыше 1,3 м происходит переход от ламинарного горения к турбулентному. Рост скорости выгорания в этой области обусловлен повышением количества тепла, поступающего к по­верхности жидкости от зоны горения. Турбулентность увеличивает объем факела и, соответственно, количество тепла, поглощаемое жидкостью. Причем, это дальнейшее увеличение диаметра резервуара свыше 1,3 м приводит к формированию развитого турбулентного режима, при котором величина теплового потока от факела пламени к поверхности жидкости стабилизи­руется и скорость выгорания практически не изменяется.

Влияние начальной температуры. С уве­личением Т0 скорость выгорания возрастает, поскольку снижа­ются затраты тепла на прогрев жидкости до температуры кипения.

Влияние уровня жидкости в резервуаре.С понижением уровня жидкости происходит снижение скорости выгорания вплоть до прекращения горения. Поскольку подвод воздуха, необходимого для горения, за счет диффузии из окружающей среды непосредственно вовнутрь ре­зервуара невозможен, то при понижении уровня жидкости происходит удаление зоны пламени от поверхности горения. Величина лучистого потока к зеркалу жидкости снижается, а следовательно, уменьшается и скорость выгорания вплоть до затухания. При горении жидкостей в резервуарах большого диа­метра предельная глубина, при которой происходит затуха­ние горения, очень большая. Так, для резервуара с диаметром 5 м она составляет 11 м,а с диаметром 5 м – около 35 м.

Влияниевлажности жидкости. Содержание влаги понижает скорость выгорания жидкости, во-первых, вследствие дополни­тельных затрат тепла на ее испарение; во-вторых, в результате флегматизирующего влияния паров воды в газовой зоне. Последнее приводит к снижению температуры пламени, а следовательно, уменьшается и его излучательная способность. Строго говоря, скорость выгорания влажной жидкости не постоянная, она увеличивается или уменьшается в процессе горения в зависимости от величины температуры кипения жидкости.

Влажное горючее может быть представлено как смесь двух жидкостей (горючее + вода), в процессе горения которых проис­ходит их фракционная разгонка. Если температура кипения горючей жидкости меньше температуры кипения воды (100 0 С), то происходит преимущественное выгорание горючего, смесь обога­щается водой, скорость выгорания снижается и, наконец, горение прекращается. Если температура кипения жидкости больше 100 0 С, напротив, вначале преимущественно испаряется влага, концентрация ее снижается и скорость выгорания жидкости возрастает, вплоть до скорости горения чистого продукта.

Влияние скорости ветра.Как правило, с повышением скорости ветра скорость выгорания жидкости увеличивается. Ветер интенсифицирует процесс смешения горючего с окислителем, повышая температуру пламени и приближая пламя к поверхно­сти горения. Все это повышает интенсивность теплового потока, поступаю­щего на нагрев и испарение жидкости, следовательно, приводит к росту скорости выгорания. При большей скорости ветра пламя может срываться, что приведет к прекращению горения. Так, на­пример, при горении тракторного керосина в резервуаре диамет­ром 3 м наступал срыв пламени при достижении скорости ветра 22 м/с.

Влияние концентрации кислорода в атмосфере. Большинство жидкостей не способны к горению в атмосфере с содержанием кислорода менее 15 %. С повышением концентрации кислорода выше этого предела скорость выгорания возрастает. В атмосфере, обогащенной кислородом, горение жидкости проте­кает с выделением большого количества сажи в пламени и на­блюдается интенсивное кипение жидкой фазы. Для многокомпо­нентных жидкостей (бензин, керосин и т. п.) температура поверх­ности с увеличением содержания кислорода в окружающей среде возрастает. Повышение скорости выгорания и температуры поверхности жидкости с ростом концентрации кислорода в атмосфере обуслов­лено увеличением излучающей способности пламени в результате роста температуры горения и высокого содержания сажи в нем.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ ГОРЕНИЯ

Методы определения скорости горения пиросоставов базируются на фиксации временя начала и конца горения столбика состава определенной длины. Эта фиксация осуществляется визуально (при атмосферном давлении), при помощи термопар, фоторегистра или кинокамеры.

Существует два способа для количественной характеристики скорости горения: линейной скорости и в мм/с и массовой скорости ит, выражаемой в размерности г/см2-с; последняя показывает количество состава, сгорающее в 1 секунду единицы горящей поверхности. Массовую скорость горения можно вычислить по формуле Um = 0,1 u*d где d—плотность состава в г/см3.

Как было уже указано, горение протекает равномерно лишь при достаточном уплотнении состава. Для оценки степени уплотнения ‘необходимо определить коэффициент уплотнения /С, представляющий собой частное от деления практически достигнутой плотности d на предельную плотность состава dmax последняя находится вычислением исходя из плотности компонентов состава:

где di, d1 d2, . . ., dn, — плотность компонентов;

а, Ь, . . п — содержание этих компонентов в составе в %.

Для большинства спрессованных составов коэффициент уплотнения колеблется в пределах 0,7—0,9. Насыпная плотность порошкообразных составов составляет 40—60% от dmax.

Для различных составов линейная скорость горения колеблется весьма значительно: от десятых долей мм/с (для дымовых составов) до 20—30 мм/с (для быстрогорящих осветительных составов).

От каких же факторов зависит скорость горения сосгавов?

Скорость сложнейшего физико-химического процесса — горения — определяется скоростью отдельных (элементарных) химических реакций и процессами диффузии и теплопередачи из одной зоны реакции в другую.

Интенсивность теплопередачи в значительной мере определяется разностью температур в различных зонах реакции. Составы, имеющие наиболее высокую температуру пламени, являются, как правило, и наиболее быстро горящими.

Однако существующие исключения из этого правила показывают, что высокая температура в пламени является только одним из факторов, определяющих скорость горения составов.

1 Пористость состава будет характеризоваться значением (—К). Следовательно, пористость спрессованных составов лежит в пределах 0,3—0,1.

Скорость горения в большой степени зависит от наличия в составе низкоплавящихся или легколетучих компонентов. При наличии их то тепло, которое пр:и других условиях вызвало бы резкое повышение температуры в зоне реакции, расходуется на плавление или испарение этих веществ.

Именно этим в значительной мере объясняется тот факт, что низкоплавящиеся органические вещества (смолы, парафин, стеарин и др.) при введении их в двойные смеси (окислитель — мегалл) резко уменьшают скорость горения.

Ведущими в процессе горения являются высокоэкзотермические (пламенные) реакции.

Однако скорость многостадийного процесса горения в целом определяется прежде всего тем, с какой скоростью протекает наиболее трудно и медленно идущая стадия процесса; такими являются эндотермические химические процессы.

Во многих случаях скорость горения составов определяется скоростью процесса разложения окислителя.

Объективным показателем, характеризующим легкость разложения окислителя, может служить парциальное давление над ним кислорода при различных температурах.

Как известно, константа скорости химической реакции К, чрезвычайно сильно возрастает при повышении температуры по закону

где В—предэкслоненциалыный множитель;

Е—энергия активации в ккал/г-моль (кДж/г-моль);

R — газовая постоянная.

Но знание максимальной температуры и энергии активации процесса не дает нам реальной возможности вычисления скорости горения, так как горение — это совокупность химических реакций, протекающих в неизотермических условиях.

Безусловно, очень важно знание промежуточных стадий процесса горения. Но для ‘выяснения их требуется проведение весьма сложного эксперимента; в настоящее время данные эти для большинства пиросоставов, к сожалению, отсутствуют.

Переходя к рассмотрению фактического материала, следует указать, что скорость горения составов определяется как их рецептом (химические факторы), так и условиями горения (физические факторы).

Под химическими факторами понимается влияние:

1) индивидуальных свойств компонентов состава;

2) количественного соотношения между ними;

3) ускоряющего действия каталитических добавок. Из рассмотрения данных о скорости горения сильно уплотненных составов при атмосферном давлении и 20° С следует, что наиболее быстрогорящими являются двойные смеси нитратов щелочных (или щелочноземельных) металлов с магнием, содержащие в себе 40—65% магния. Еще быстрее горят составы с цирконием.

Составы с алюминием при условии одинакового измельчения металла горят значительно медленнее, чем составы с магнием 1. Одна из причин — большая разница в температуре кипения магния и алюминия: 1100 и

2300° соответственно. Медленно горят составы, содержащие в качестве основного горючего бериллий, бор или кремший. Чем выше температура воспламенения горючего, тем меньше при прочих равных условиях скорость горения состава. Возможно, имеется также взаимосвязь между скоростью горения состава я числом Пиллинга и Бэдворса для содержащегося в составах металла ,,(а также В и Si). Для быст-рогорящих металлов, Mg ,и Zr эти числа соответственно равны 0,81 и 1,45; для Be, Si и В эти числа больше и равны соответствeнно 1,75; 2,04 и 4,08.

При практическом использовании смесей, содержащих алюминий, происходит неполное его сгорание. Горение капель алюминия в газовом потоке изучалось многими авторами [158]. Большое внимание было уделено процессу горения тройной системы:

МН4СlO4+ органическое горючее+А1.

А. Ф. Беляев [10] делает следующие выводы:

1. Увеличение концентрации алюминиевого порошка (в тройной смеси, прим. авт. данной книги)приводит к увеличению времени горения его частиц.

2. Увеличение времени горения происходит за счет ухудшения газового состава окисляющей среды и в результате агломерации (курсив автора), которая приводит к укрупнению горящих частиц алюминия.

3. Агломераты, помимо алюминия, содержат значительное количество продуктов частичного разложения органического горючего. Время горения агломератов зависит от количества содержащегося в них алюминия».

Находящиеся в газовом потоке (в дымогазовой зоне пламени) капли алюминия покрыты слоем оксидной пленки и доступ газа-окислителя к еще не окисленному металлу затруднен. Нарушение оксидной пленки на капле металла может быть вызвано:

1) плавлением Аl2О3 (при 2030° С);

2) пробиванием ее изнутри парями металла при температуре, близкой к температуре его кипения (

2300°С). Следовательно, горение капель алюминия протекает весьма интенсивно в том случае, когда температура пламени превышает 2200—2300° С.

Опубликована работа [73] о взаимосвязи между химическим строением органических горючих и скоростью горения стехиомет-

* Один из возможных способов активизации горения частиц алюминия — покрытие их магниевой пленкой.

рических двойных смесей (NH4C104+ органическое вещество) при 20 атмосферах. Было изучено 25 различных твердых органических веществ.

Медленнее всех горели смеси с органическими кислотами — 3,0 мм/с, быстрее — смеси со спиртами и углеводородами, 4,5— 4,8 мм/с, еще быстрее смеси с аминами и нитросоединениями, 5,4—6,0 мм/с, затем смеси с нитраминами — 7,0 мм/с; смесь с ферроценом горела значительно быстрее всех других — 15 мм/с.

Авторы работы пришли к выводу, что в данном случае скорость горения не зависит от калорийности смесей, а определяется прочностью слабейшей связи в молекуле горючего; прочность связи уменьшается до ряду С—С, С—NH2, С—NОз, N—NO2.Большую скорость горения смеси с ферроцаном (C5H5)2Fe авторы объясняют каталитическим действием образующейся в результате горения окиси железа.

По вопросу о зависимости максимальной скорости горения от соотношения компонентов в смеси высказываются следующие соображения.

Составы делятся на две группы, в первой из которых максимум скорости горения лежит вблизи стехиометрического соотношения между компонентами (K=’0,7/0,9), а для второй группы резко сдвинут в сторону избытка горючего (вплоть до K1 Zr—>-W. При горении составов, содержащих сплав А1—Mg, наблюдается своеобразное явление: сначала из частичек сплава испаряется и в парах сгорает магний и лишь позднее сгорает алюминий.

*К — обеспеченность состава окислителем.

При одинаковом содержании металла двойные смеси NaNO3 с магнием горят быстрее, чем смеси NaClO3 с магнием. Возможно, причиной этого является экзотермическое взаимодействие расплава нитрата с магнием в конденсированной фазе. Значительную роль здесь играет также то обстоятельство, что газовая

Факторы, влияющие на скорость горения порохов

Для метательных ВВ – порохов горение является типичным взрывчатым превращением. Как при низких, так и при высоких давлениях вплоть до 500 – 600 МПа горение осуществляется параллельными концентрическими слоями, что и определяет устойчивость процесса.

В горении порохов различают следующие три фазы:

1) зажжение или местное возбуждение самораспространяющейся реакции;

2) воспламенение или распространение возбуждённого процесса по поверхности вещества;

3) собственно горение или распространение реакции в глубь вещества.

Деление процесса на три стадии является чисто условным, но имеет смысл по причине различия скоростей указанных фаз.

Зажжение есть начальная стадия воспламенения, как правило, под влиянием местного нагрева.

Скорость воспламенения порохов зависит от природы пороха, состояния его поверхности, окружающей среды и давления. По способности к воспламенению дымные пороха стоят на первом месте.

Скорость воспламенения при прочих равных условиях возрастает с увеличением удельной поверхности пороха.

С возрастанием давления скорость воспламенения увеличивается. Это объясняется тем, что при повышении давления затрудняется удаление горячих газообразных продуктов горения от поверхности пороха.

Скорость воспламенения нитроцеллюлозных порохов на открытом воздухе по данным Левковича и Арша колеблется в пределах 20 – 40см/ с. При горении порохов на воздухе скорость распространения по поверхности вещества (воспламенения) значительно больше скорости горения. Если вертикально подвешенный пороховой стержень зажечь в верхнем конце, то через некоторое время поверхность горения стержня, вследствие различия в скоростях воспламенения и горения, примет форму правильного конуса рис.№2.8. Соотношение между этими скоростями может быть определено по углу у вершины конуса:

, (2.16)

где — скорость горения , — скорость воспламенения.

При горении порохового стержня в атмосфере инертного газа обе эти скорости равны и вместо конуса образуется неглубокий кратер.

Скорость горения зависит, при прочих равных условиях, от калорийности пороха, начальной температуры пороховых элементов и внешнего давления или давления в продуктах горения, если процесс протекает в замкнутом пространстве.

С увеличением калорийности пороха скорость горения его возрастает. Так например, скорость горения пироксилиновых порохов возрастает с увеличением содержания в них азота.

Влияние плотности и температуры. Плотность зёрен очень сильно влияет на скорость. При увеличении плотности зёрен всего на 15 –17 % скорость горения пороха уменьшается в 10 – 20 раз . Такое сильное влияние объясняется ростом препятствий проникновению горячих продуктов горения в глубь зёрен.

С увеличением начальной температуры пороха скорость горения его увеличивается. Так отношение скоростей горения для нитроглицеринового пороха при 100 0 С и 0 0 С составляет 2,9.

Влияние давления. Чувствительность к давлению различных порохов не одинакова. Если дымные пороха при атмосферном давлении горят в 10 раз быстрее чем пироксилиновые ружейные пороха, то при больших давлениях наблюдается обратная картина: скорость горения пироксилиновых порохов значительно больше чем дымных.

Для описания зависимости скорости горения от давления существует много различных формул, но каждая из них отражает зависимость только в ограниченном диапазоне давлений и не одна из них не в состоянии описать зависимость в широком диапазоне давлений. Препятствием к такому обобщению является зависимость самого механизма горения и теплового эффекта реакции от давления. Так эксперименты показали, что тепловой эффект при сгорании нитроглицеринового пороха при давлениях меньших 4 МПа составляет всего лишь около 53% теплоты сгорания пороха при р≥7МПа.

Зависимость , согласно Вьелю соответствует уравнению

, (2.17)

где А и ν зависят от природы пороха и величины давления.

Для дымных порохов ν меняется с возрастанием давления, как это указано в таблице №2.5.

Факторы, влияющие на скорость и устойчивость детонации зарядов взрывчатых веществ

Установлено, что скорость детонации заряда из В В зависит от характеристик самого ВВ (типа дисперсности, теплоты взрыва, плотности заряда), диаметра заряда и условий взрывания (наружный или внутренний заряд в шпуре или скважине, наличие забойки). Во всех случаях необходимо знать устойчивость и скорость детонации или величину критического диаметра заряда. Для каждого В В существует два характерных диаметра заряда (критический и предельный).

Критический диаметр dKp — значение диаметра заряда, при уменьшении которого детонация заряда В В становится неустойчивой, а при дальнейшем уменьшении полностью затухает.

С увеличением диаметра заряда больше критического скорость детонации растет до определенного значения, но дальнейшее увеличение диаметра на скорость не влияет. Предельный диаметр dnp — значение диаметра заряда, при котором скорость детонации достигает максимального значения (рис. 4.4).

Рис. 4.4. Зависимость скорости детонации зарядов ВВ от диаметра

Влияние диаметра на скорость детонации заряда было впервые теоретически объяснено Ю. Б. Харитоном и развито в трудах Ф. А. Баумана.

Высокое давление на фронте волны детонации вызывает интенсивное расширение продуктов детонации в разные стороны. Возникающие при этом волны разряжения направляются в зону химической реакции и снижают давление и температуру продуктов взрыва, в результате снижается скорость детонации за счет снижения величины энергии подпитки фронта волны детонации.

Характер протекания этого процесса зависит от соотношения ширины зоны химической реакции Ьр и диаметра заряда d. Время химической реакции будет равно

Т| =Lp/Wv а время прохождения волной разряжения расстояния до центра заряда т2 = d/2Wp, где Wp скорость волны разряжения, м/с. При тх 3 , которой соответствует максимальная скорость детонации (рис. 4.5). При дальнейшем увеличении плотности рост скорости детонации прекращается, а затем она начинает снижаться.

Это происходит за счет того, что при изменении плотности ВВ химическое превращение компонентов ВВ и химическое взаимодействие продуктов взрыва меняются, что ухудшает условия протекания химической реакции. Так, при сильном уплотнении аммиачная селитра в аммонитах ведет себя как инертное вещество и, поглощая энергию, делает невозможным распространение детонации по заряду. При наличии в составе ВВ мощного компонента (тротил, гексоген) можно добиться такого его уплотнения, что детонация в заряде будет распространяться только

Рис. 4.5 . Зависимость скорости детонации от плотности ВВ:

1 — для однокомпонентных; 2,3 — для смесевых ВВ по этому компоненту, что приведет в результате к увеличению ее скорости.

При большом диаметре заряда или размещении его в оболочке критическая плотность ВВ увеличивается. С увеличением теплоты взрыва скорость детонации ВВ увеличивается, а критический диаметр уменьшается. Так, теплота взрыва тротила 3450 кДж/кг, скорость детонации 6,0 км/с, критический диаметр 10 мм, а для гексогена эти же величины соответственно равны: 5450 кДж/кг; 8,4 км/с и 1,5 мм (см. табл. 4.1).

Значительное влияние оказывает дисперсность ВВ. При снижении размера частиц для тротила от 0,5 до 0,01 мм критический диаметр снижается с 28 до 9 мм. Все грубодисперсные ВВ имеют большие критические диаметры, чем порошкообразные В В того же состава.

Критический диаметр для смесевых В В зависит от процентного соотношения их компонентов. Так, с уменьшением содержания тротила в аммонитах с 21 до 5% критический диаметр увеличивается с 12 до 25 мм.

Влияние скорости детонации инициатора сказывается лишь на начальном участке развития детонации, где в зависимости от величины импульса может быть получена скорость детонации выше или ниже характерной для данного диаметра заряда, но в любом случае на участке размером 1—2 диаметра скорость стабилизируется (рис. 4.6).

Для инициирования любого заряда необходимо иметь достаточно мощный точечный источник, который вызовет

Рис. 4.6. Изменение скорости детонации заряда по длине ВВ (Ьяар) при различной мощности инициатора:

1 — малая мощность; 2 — большая мощность начальную детонацию в критической массе инициированного заряда и своей энергией обеспечит самораспростра- нение детонации по всему заряду с характерной для него скоростью.

Ссылка на основную публикацию
Adblock
detector