18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Хим фос ускоренное хр

Химическое фосфатное оксидирование: технология, свойства, применение

Химическое фосфатное оксидирование предназначено для предотвращения коррозии на чёрных и цветных металлах. Оно не только спасает металлические изделия от разрушения, но и значительно увеличивает такие немаловажные параметры, как:

  • твёрдость;
  • износостойкость;
  • электроизоляционные свойства.

Этим методом покрытия обрабатывают следующие металлы:

  • чугун;
  • низколегированные стали;
  • углеродистые стали;
  • медь и её сплавы;
  • алюминий;
  • кадмий;
  • цинк;
  • магний;
  • никель;
  • титан.

Технология покрытия стала особенно популярной в сфере автомобилестроения. Сначала металл обрабатывается методом оксидирования. Затем происходит нанесение эмалей.

Что из себя представляет химическое оксидирование?

Оксидирование металла — создание на поверхности металлаплотной оксидной плёнки. Она препятствует дальнейшему окислению (коррозии) изделия.

Химическое фосфатное оксидирование (фосфатирование) — возникновение фосфатной плёнки после обработки металла химическим способом.

Как происходит фосфатирование?

В основу процесса фосфатирования входят смеси солей марганца, железа и фосфорной кислоты. Поэтому препарат, содержащий все эти элементы, получил сокращённое название Мажеф.

Металлические изделия помещаются в специальную ванну с разогретой смесью Мажеф на 1-1,5 часа. В конечном итоге на деталях образуется слой разной толщины: от 2 до 50 мкм. Слой в несколько мкм используется для основы под покрытие лакокрасочными материалами. Если же на изделии слой из толстой плёнки — то он выступает как самостоятельное покрытие и в дальнейшей обработке не нуждается. Такое покрытие выдержит низкие температуры, а также недолгое влияние температуры до 500С.

Цвет фосфатного покрытия зависят от обрабатываемой поверхности:

  • Светло-серый образуется на малоуглеродистых сталях и цветных металлах. Важно, чтобы перед этим изделия проходили пескоструйную обработку в растворах с повышенном содержанием уровня кислотности.
  • Тёмно-серый оттенок получается на чугунных изделиях или деталях из высоколегированной стали. Перед фосфатированием металл подвергается травлению с высокой концентрацией ортофосфорной кислоты.
  • Зеленоватый цвет характерен для покрытия на стали, в состав которой входят никель и хром.

Свойства фосфатного покрытия

  • Так как фосфатное покрытие достаточно легко разрушается под действием щелочей и кислот, оно редко используется как самостоятельное. В основном, фосфатирование является основой для лакокрасочного или смазочного покрытий. Также его применяют перед пассивированием.
  • Фосфатное покрытие не является чувствительным к кислороду, воздуху, маслам, керосину. Расплавленными металлами не смачивается.
  • Слой способен выдержать температуру от — 75 °С до 500 °С. При долгом воздействии самой низкой или самой высокой температуры покрытие постепенно будет разрушаться.
  • Покрытие обладает хорошим электросопротивлением до 500 В. Слой твёрже, чем латунь или медь, но мягче, чем сталь.
  • Фосфатный слой хорошо взаимодействует с маслами, смолами, красками благодаря адгезии.
  • Фосфатирование не меняет размера изделия.

Применение

Фосфатное покрытие применяется в сферах автомобилестроения, судостроения, сельского хозяйства, металлургической и электронной промышленностях, машиностроении. Химическое фосфатное оксидирование широко используют для основы под лакокрасочные покрытия, а также для защиты металлов от окисления. Ещё одним преимуществом этого метода является его низкая стоимость.

Рекомендации покрытия пружин. Основные виды покрытий

Рекомендации покрытия пружин

Поверхности пружин после дробеструйной обработки необходимо защитить от атмосферного влияния или действия агрессивных сред, поверхность пружин покрывают специальным слоем, который защищает ее от преждевременного разрушения.

Существует множество видов защитных покрытий. Выбор того или иного вида покрытия зависит от условий эксплуатации пружины.

Антикоррозионные покрытия увеличивают рабочий ресурс пружин.

К выбору покрытия необходимо подходить со знанием о влиянии различных видов покрытия на упругие элементы.

Защитное покрытие не должно приводить к ухудшению механических свойств пружин.

Наше предприятие не рекомендует использовать цинкование пружин с сечением проволоки, прутка выше 8мм, а также тарельчатых пружин с толщиной более 2мм.

В процессе цинкования, происходит наводороживание металлов которое резко уменьшает пластичность, длительную прочность, что приводит к хрупкости изделий.

Наводороживание металлов может происходить как при их изготовлении в процессе травления, гальванического покрытия, так и при катодной поляризации. Проникновение водорода в металл приводит к изменениям параметров кристаллической решетки, электрохимических и механических свойств.

При использовании покрытия цинкование обязательно применяется операция прогрева с целью обезводораживания.

Основные виды покрытий

Цинкование

Нанесение цинка гальваническим способом на поверхность пружины слоями от 6 (Ц6хр.) до 18 (Ц18хр.) микрон. Покрытие обладает хорошей адгезией и эластичностью. В зависимости от пассивации имеет различные оттенки.

Требует обезводораживания для исключения риска водородного насыщения.

Для пружин не рекомендуется использовать горячее цинкование.

Химическое фосфатирование (Хим.Фос)

Самый распространённый способ защиты антикоррозийного покрытия. Используется для пружин при эксплуатации в неблагоприятных атмосферных условиях. В процессе покрытия не происходит наводороживания металла, не требует обезводораживания, нет риска появления хрупкости пружины.

Покрытие используется перед нанесения эмали или грунта или как самостоятельное – с последующей пропиткой хромпиком (Хим.Фос.хр.), маслом (Хим.Фос.прм.)

Химическое оксидирование

Является антикорозийным покрытием для защиты пружин и металлоизделий в условиях длительного хранения также при эксплуатации в неблагоприятных атмосферных условиях.

Покрытие используется перед нанесения эмали или грунта или как самостоятельное – с последующей пропиткой хромпиком (Хим.Окс.хр.), маслом (Хим.Окс.прм.).

Кадмирование

Нанесение кадмия гальваническим способом на поверхность пружины слоями от 6 (Кd6хр.) до 18 (Кd 18хр.) микрон. Покрытие обладает хорошей адгезией и эластичностью.
Применяется в особо жёстких условиях эксплуатации пружин, имеет ограниченное применение в связи в высокой токсичностью при нанесении покрытия на изделия. В зависимости от пассивации имеет различные оттенки.

Требует обезводораживания для исключения риска водородного насыщения.

Никелирование

Нанесение никеля на поверхность пружины слоем от 6 до 18 микрон. Применяется в особо жёстких условиях эксплуатации пружин. В связи с невысокой адгезией к стали никель наносится на медную подложку, для повышения декоративных свойств по окончании наносят тонкий (1 мкм) слой хрома (Хим. Н24).

Требует обезводораживания для исключения риска водородного насыщения.

Электрополирование

Представляет собой электрохимический процесс анодного растворения поверхности изделия, помещенной в специальный электролит и подключенной к положительному полюсу источника тока.

При прохождении тока через образовавшуюся цепь происходит избирательное растворение обрабатываемой поверхности — удаляются выступы поверхности, представляющие собой вершины шероховатостей.

Электрополирование выравнивает поверхность, т. е. удаляет крупные выступы (волнистость) и глянцует ее, устраняя шероховатость (до 0,01 мкм).

Применяют как метод особо чистой отделки или доводки поверхности для повышения ее коррозионной стойкости и улучшения внешнего вида.

Применяется для жаропрочных и нержавеющих сталей типа 12Х18Н10Т, ХН77ТЮР.

Лакокрасочные покрытия

композиционные составы, наносимые на поверхности в жидком или порошкообразном виде равномерными тонкими слоями и образующие после высыхания и отвердения пленку, имеющую прочное сцепление с основанием. Сформировавшуюся плёнку называют лакокрасочным покрытием, свойством которого является защита поверхности от внешних воздействий (воды, коррозии, температур, вредных веществ), придание ей определённого вида, цвета и фактуры. Необходимое число слоёв указывается в конструкторской документации. Назначаются, преимущественно, на крупногабаритные пружины.

Фосфатное покрытие металлов. Часть 1.

Фосфатное покрытие – один из методов защиты металлов от коррозии. Фосфатные покрытия представляют собой мелкокристаллическую пленку, состоящую из нерастворимых фосфатов железа с фосфатами марганца или цинка. Фосфатные покрытия после дополнительной обработки маслами, лаками или красками надежно защищают металл от коррозии.

Фосфатные пленки обладают высоким электрическим сопротивлением и выдерживают напряжение до 300 – 500В, после пропитки пленок масляными и бакелитовыми лаками пробивное напряжение значительно повышается.

По твердости фосфатные покрытия превосходят медь и латунь, но ниже стали. Фосфатные покрытия выдерживают кратковременный нагрев до 400 – 500 0 С.

Возможности фосфатных покрытий широко используются: для защиты от коррозии; для электроизоляции; для уменьшения трения; в качестве грунта для нанесения лакокрасочных покрытий.

Сущность процесса осаждения фосфатных покрытий заключается в обработке поверхности металла подкисленными растворами однозамещенных фосфатов, в результате на поверхности образуется пленка нерастворимых фосфатов.

Толщина, структура, пористость, цвет фосфатного покрытия зависит от состава обрабатываемого металла, метода и режима фосфатирования и подготовки поверхности (см. «Как подготовить поверхность детали под покрытие»).

Мелкокристаллические фосфатные покрытия обладают лучшей защитной способностью, чем крупнокристаллические. Они получаются из цинкофосфатных растворов, содержащих ускорители (окислители) и применяются в качестве подслоя под лакокрасочные покрытия.

Крупнокристаллические фосфатные покрытия получают из марганцевофосфатных растворов, после промасливания их используют в качестве самостоятельных защитных покрытий.

Процесс нанесения фосфатных покрытий можно осуществлять химическим или электрохимическим способом.

Химический способ нанесения фосфатного покрытия.

Для черных металлов существует несколько способов химического осаждения фосфатного покрытия: нормальное, ускоренное и холодное.

Для нормального фосфатирования применяют препарат Мажеф с концентрацией 30 – 33 г/л при температуре 96 – 98 0 С в течение 5 – 10 минут. Снижение температуры приводит к образованию большого количества шлама. Фосфатные пленки, полученные в растворах соли Мажеф, имеют прочное сцепление с основой, толщину 7 – 50 мкм, пористую структуру. Обладают высокими электроизоляционными свойствами и жаропрочностью.

Для получения мелкокристаллических пленок следует повысить концентрацию препарата Мажеф до 100 – 200 г/л и снизить температуру до 80 – 85 0 С. Нанесение фосфатного покрытия в растворе соли Мажеф имеет ряд недостатков: высокую температуру, узкий рабочий интервал рабочих температур и обильное выделение водорода, что приводит к наводораживанию стали.

Для ускоренного нанесения фосфатного покрытия применяется раствор, лишенный указанных недостатков за счет введения окислителей нитрата цинка, фторида натрия и др. При этом уменьшается выделение водорода, а железо окисляется до 3-х валентного.

Фосфатное покрытие на стали

Состав раствора, г/л:

Препарат Мажеф 30 – 40

Цинк азотнокислый 50 – 65

Натрий фтористый 2 – 5

Температура 45 – 65 0 С

Время 8 – 15 минут.

Разработаны и нашли широкое применение концентраты КФ-1, КФ-3, которые применяют для получения фосфатного подслоя под лакокрасочные покрытия, а также концентраты КФЭ-1, КФЭ-3 – для нанесения фосфатных пленок перед холодной деформацией.

Более подробно процесс нанесения фосфатных покрытий для различных металлов будет рассмотрен в следующей публикации.

Хим фос ускоренное хр

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система защиты от коррозии и старения

ПОКРЫТИЯ МЕТАЛЛИЧЕСКИЕ И НЕМЕТАЛЛИЧЕСКИЕ НЕОРГАНИЧЕСКИЕ

Unified system of corrosion and ageing protection. Metallic and non-metallic inorganic coatings. Symbols

Дата введения для вновь разрабатываемых изделий
1987-01-01
для изделий, находящихся в производстве,
— при пересмотре технической документации

1. РАЗРАБОТАН И ВНЕСЕН Академией наук Литовской ССР

Э.Б.Давидавичюс, канд. хим. наук; Г.В.Козлова, канд. техн. наук (руководители темы); Э.Б.Рамошкене, канд. хим. наук; Т.И.Бережняк; А.И.Волков, канд. техн. наук; Т.А.Карманова

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24.01.85 N 164

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

5. ПЕРЕИЗДАНИЕ (ноябрь 1996 г.) с Изменениями N 1, 2, 3, утвержденными в октябре 1985 г., феврале 1987 г., мае 1993 г. (ИУС 1-86, 5-87, 8-92)

Настоящий стандарт устанавливает обозначения металлических и неметаллических неорганических покрытий в технической документации.

1. Обозначения способов обработки основного металла приведены в табл.1.

Способ обработки основного металла

Обработка «под жемчуг»

Нанесение дугообразных линий

Нанесение волосяных линий

2. Обозначения способов получения покрытия приведены в табл.2.

Способ получения покрытия

_____________
* Способ получения покрытий, окрашивающихся в процессе анодного окисления алюминия и его сплавов, магния и его сплавов, титановых сплавов, обозначают «Аноцвет».

** Способ получения покрытий термическим разложением металлоорганических соединений обозначают Мос Тр.

(Измененная редакция, Изм. N 3).

3. Материал покрытия, состоящий из металла, обозначают символами в виде одной или двух букв, входящих в русское наименование соответствующего металла.

Обозначения материала покрытия, состоящего из металла, приведены в табл.3.

Наименование металла покрытия

4. Обозначения никелевых и хромовых покрытий приведены в обязательном приложении 1.

5. Материал покрытия, состоящий из сплава, обозначают символами компонентов, входящих в состав сплава, разделяя их знаком дефис, и в скобках указывают максимальную массовую долю первого или первого и второго (в случае трехкомпонентного сплава) компонентов в сплаве, отделяя их точкой с запятой. Например, покрытие сплавом медь-цинк с массовой долей меди 50-60% и цинка 40-50% обозначают М-Ц (60); покрытие сплавом медь-олово-свинец с массовой долей меди 70-78%, олова 10-18%, свинца 4-20% обозначают М-О-С (78; 18).

В обозначении материала покрытия сплавом при необходимости допускается указывать минимальную и максимальную массовые доли компонентов, например, покрытие сплавом золото-никель с массовой долей золота 93,0-95,0%, никеля 5,0-7,0% обозначают Зл-Н (93,0-95,0).

В обозначении покрытия сплавами на основе драгоценных металлов деталей часов и ювелирных изделий допускается указывать среднюю массовую долю компонентов.

Для вновь разрабатываемых сплавов обозначение компонентов производят в порядке уменьшения их массовой доли.

(Измененная редакция, Изм. N 2).

6. Обозначения покрытий сплавами приведены в табл.4.

Наименование материала покрытия сплавами

(Измененная редакция, Изм. N 3).

7. В обозначении материала покрытия, получаемого способом вжигания, указывают марку исходного материала (пасты) в соответствии с нормативно-технической документацией.

8. В обозначении покрытия припоем, получаемого горячим способом, указывают марку припоя по ГОСТ 21930-76, ГОСТ 21931-76.

9. Обозначения неметаллических неорганических покрытий приведены в табл.5.

10. При необходимости указания электролита (раствора), из которого требуется получить покрытие, используют обозначения, приведенные в обязательных приложениях 2, 3.

Наименование неметаллического неорганического покрытия

Электролиты (растворы), не указанные в приложениях, обозначают полным наименованием, например, Ц9. хлористоаммонийный. хр, М15. пирофосфатный.

11. Обозначения функциональных свойств покрытий приведены в табл.6.

Наименование функциональных свойств покрытия

12. Обозначения декоративных свойств покрытий приведены в табл.7.

Наименование декоративного свойства

Декоративный признак покрытия

__________________
* Цвет покрытия, соответствующий естественному цвету осажденного металла (цинка, меди, хрома, золота и др.), не служит основанием для отнесения покрытия к окрашенным.

Цвет покрытия обозначают полным наименованием, за исключением черного покрытия — ч.

13. Обозначения дополнительной обработки покрытия приведены в табл.8.

Наименование дополнительной обработки покрытия

Наполнение в воде

Наполнение в растворе хроматов

Нанесение лакокрасочного покрытия

Пропитка (лаком, клеем, эмульсией и др.)

Химическое окрашивание, в том числе наполнение в растворе красителя

эл. Наименование цвета

_______________
* При необходимости обозначают цвет хроматной пленки: хаки — хаки, бесцветной — бцв; цвет радужной пленки — без обозначения.

14. Обозначение дополнительной обработки покрытия пропиткой, гидрофобизированием, нанесением лакокрасочного покрытия допускается заменять обозначением марки материала, применяемого для дополнительной обработки.

Марку материала, применяемого для дополнительной обработки покрытия, обозначают в соответствии с нормативно-технической документацией на материал.

Обозначение конкретного лакокрасочного покрытия, применяемого в качестве дополнительной обработки, производят по ГОСТ 9.032-74.

15. Способы получения, материал покрытия, обозначение электролита (раствора), свойства и цвет покрытия, дополнительную обработку, не приведенные в настоящем стандарте, обозначают по технической документации или записывают полным наименованием.

(Измененная редакция, Изм. N 2).

16. Порядок обозначения покрытия в технической документации:

обозначение способа обработки основного металла (при необходимости);

обозначение способа получения покрытия;

обозначение материала покрытия;

минимальная толщина покрытия;

обозначение электролита (раствора), из которого требуется получить покрытие (при необходимости);

обозначение функциональных или декоративных свойств покрытия (при необходимости);

обозначение дополнительной обработки (при необходимости).

В обозначении покрытия не обязательно наличие всех перечисленных составляющих.

При необходимости в обозначении покрытия допускается указывать минимальную и максимальную толщины через дефис.

Допускается в обозначении покрытия указывать способ получения, материал и толщину покрытия, при этом остальные составляющие условного обозначения указывают в технических требованиях чертежа.

(Измененная редакция, Изм. N 2).

17. Толщину покрытия, равную или менее 1 мкм, в обозначении не указывают, если нет технической необходимости (за исключением драгоценных металлов).

18. Покрытия, используемые в качестве технологических (например, цинковое при цинкатной обработке алюминия и его сплавов, никелевое на коррозионно-стойкой стали, медное на сплавах меди, медное на стали из цианистого электролита перед кислым меднением) допускается в обозначении не указывать.

19. Если покрытие подвергается нескольким видам дополнительной обработки, их указывают в технологической последовательности.

20. Запись обозначения покрытия производят в строчку. Все составляющие обозначения отделяют друг от друга точками, за исключением материала покрытия и толщины, а также обозначения дополнительной обработки лакокрасочным покрытием, которое отделяют от обозначения металлического или неметаллического неорганического покрытия чертой дроби.

Обозначение способа получения и материала покрытия следует писать с прописной буквы, остальных составляющих — со строчных.

Примеры записи обозначений покрытий приведены в приложении 4.

(Измененная редакция, Изм. N 1, 2, 3).

21. Порядок обозначения покрытий по международным стандартам приведен в приложении 5.

(Измененная редакция, Изм. N 2, 3).

ПРИЛОЖЕНИЕ 1 (обязательное). ОБОЗНАЧЕНИЯ НИКЕЛЕВЫХ И ХРОМОВЫХ ПОКРЫТИЙ

ОБОЗНАЧЕНИЯ НИКЕЛЕВЫХ И ХРОМОВЫХ ПОКРЫТИЙ

Фосфатирование

Свойства и области применения фосфатных покрытий

Фосфатирование представляет собой процесс обработки металлических изделий растворами кислых фосфорнокислых солей с образованием на поверхности защитной солевой пленки из нерастворимых фосфатов. Фосфатная пленка выполняет свое основное назначение — защиту от коррозии только в сочетании с лакокрасочными покрытиями или масляной пленкой, что объясняется хорошими адгезионными свойствами, сама по себе она пориста.

Благодаря хорошей адгезии фосфатирование широко применяют для грунтования под лакокрасочные покрытия в различных областях машиностроения — автомобильной, судостроительной, сельскохозяйственной и др. Иногда фосфатированию подвергают различные крепежные детали с последующим пропитыванием смазочными веществами, поскольку фосфатирование не приводит к изменению размеров.

Фосфатные покрытия не смачиваются расплавленными металлами; это свойство нередко используется в металлургической промышленности и машиностроении. Кроме того, эти покрытия обладают электроизоляционными свойствами, что позволяет применять фосфатированные изделия в электропромышленности и приборостроении.

Ограничившись этим далеко неполным перечнем областей применения фосфатирования, необходимо добавить, что его осуществление не связано с затратой дорогих материалов, с привлечением квалифицированной рабочей силы и какого-либо сложного оборудования. Особенно ценным является способность фосфатной пленки заменять роль грунта под лакокрасочные покрытия. Все это делает процесс относительно дешевым и объясняет его широкое распространение.

Фосфатирование осуществляется методом погружения в раствор кислых солей фосфорнокислого железа и марганца, иногда цинка. Соль эта известна под названием МАЖЕФ (марганец, железо, фосфор). Ниже приводится примерный состав соли МАЖЕФ, %:

Водный раствор этой соли подвергается гидролизу
Me (H2PO4)2 ↔ Me НPO4 + H3PO4.

Как известно, при взаимодействии железа с фосфорной кислотой образуются одно-, двух- и трехзамещенные фосфаты и выделяется водород:
Fe + 2H3PO4→Fe(H2PO4)2 + H2,
Fe + Fe (H2PO4)2 → 2FeHPO4 + H2,
Fe + 2FeHPO4 → Fe3(PO4)2 + H2.

Однозамещенные фосфаты хорошо растворимы в воде, двухзамещенные трудно растворяются, а трехзамещенные практически не растворяются. Последние два соединения и являются основой фосфатной пленки, формирующейся на поверхности обрабатываемых изделий.

Для предотвращения диссоциации однозамещенного фосфата и выпадения нерастворимого трифосфата раствор должен содержать свободную фосфорную кислоту. При погружении в раствор железо взаимодействует с фосфорной кислотой и концентрация ее у поверхности металла уменьшается, равновесие реакции нарушается и на металле выделяется осадок двух- и трехзамещенных фосфатов. Образовавшаяся при диссоциации монофосфата фосфорная кислота восстанавливает кислотность раствора у поверхности металла, что создает условия для дальнейшего протекания процесса. По мере роста фосфатного слоя поверхность металла изолируется от воздействия раствора, скорость фосфатирования через некоторое время уменьшается и процесс заканчивается, что заметно по прекращению выделения пузырьков водорода.

Процесс фосфатирования протекает особенно эффективно при температуре 90—100° С. Ускорение процесса достигается при введении азотнокислых или азотисто-кислых солей, являющихся деполяризаторами; при этом резко сокращается доля процесса, протекающего с выделением водорода.

Защитная способность фосфатных пленок, полученных в присутствии ускорителей (так называемых ускоренным фосфатированием), ниже, чем пленок, полученных без ускорителей. Поэтому ускоренное фосфатирование преимущественно применяют для создания (замены) грунта под лакокрасочные покрытия, или для получения электроизоляционных фосфатных пленок.

Холодное фосфатирование можно осуществлять путем увеличения концентрации свободной фосфорной кислоты и введения солей азотной, азотистой и плавиковой кислот.

Толщина фосфатных пленок зависит от режима и состава раствора, а также от способа подготовки поверхности обрабатываемых изделий. На полированной стали в обычных растворах образуются мелкокристаллические пленки толщиной 2—4 мкм. При крупнокристаллическом строении обеспечивается более продолжительный доступ раствора к металлу и формируются пленки толщиной 10—15 мкм, а иногда и больше. В растворах для холодного фосфатирования получаются пленки толщиной до 6 мкм. Размер фосфатируемых изделий меняется незначительно по той причине, что наряду с ростом пленки размеры несколько уменьшаются в результате травления в фосфорной кислоте и в кислых фосфорнокислых солях.

Чаще и с лучшим эффектом фосфатируются изделия из углеродистой и малолегированной стали и чугуна. Высоколегированные стали фосфатируются с трудом, цветные металлы фосфатируются сравнительно редко.

Фосфатирование

Фосфатирование представляет собой процесс обра­ботки металлических изделий растворами кислых фос­форнокислых солей с образованием на поверхности за­щитной солевой пленки из нерастворимых фосфатов.

Фосфатирование представляет собой процесс обра­ботки металлических изделий растворами кислых фос­форнокислых солей с образованием на поверхности за­щитной солевой пленки из нерастворимых фосфатов. Фосфатная пленка выполняет свое основное назначе­ние — защиту от коррозии только в сочетании с лакокрасочными покрытиями или масляной пленкой, что объясняется хорошими адгезионными свойствами, сама по себе она пориста.

Благодаря хорошей адгезии фосфатирование широко применяют для грунтования под лакокрасочные покры­тия в различных областях машиностроения — автомо­бильной, судостроительной, сельскохозяйственной и др. Иногда фосфатированию подвергают различные кре­пежные детали с последующим пропитыванием смазочными веществами, поскольку фосфатирование не приво­дит к изменению размеров.

Фосфатные покрытия не смачиваются расплавленны­ми металлами; это свойство нередко используется в ме­таллургической промышленности и машиностроении. Кроме того, эти покрытия обладают электроизоляцион­ными свойствами, что позволяет применять фосфатированные изделия в электропромышленности и приборо­строении.

Ограничившись этим далеко неполным перечнем об­ластей применения фосфатирования, необходимо доба­вить, что его осуществление не связано с затратой доро­гих материалов, с привлечением квалифицированной рабочей силы и какого-либо сложного оборудования. Особенно ценным является способность фосфатной плен­ки заменять роль грунта под лакокрасочные покрытия. Все это делает процесс относительно дешевым и объяс­няет его широкое распространение.

Фосфатировапие осуществляется методом погруже­ния в раствор кислых солей фосфорнокислого железа и марганца, иногда цинка. Соль эта известна под назва­нием МАЖЕФ (марганец, железо, фосфор). Ниже при­водится примерный состав соли МАЖЕФ, %:

Me (Η2ΡΟ4)2 <> Me HРО4 + Η3ΡΟ4

5Ме(Н2РО4)2 <> 2МеНРО4 + Ме3(РО4)2 + 6Η3ΡΟ4

Fe + 2FeHPO4 >> Fe3(PO4)2 + H2.

3Fe(H2PO4)2 <> Fe3(PO4)2 + 4Η3ΡΟ4.

Однозамещепные фосфаты хорошо растворимы в воде, двухзамещепные трудно растворяются, а трехзамещенные практически не растворяются.

Последние два сое­динения и являются основой фосфатной пленки, форми­рующейся на поверхности обрабатываемых изделий. Для предотвращения диссоциации однозамещенного фосфата и выпадения нерастворимого трифосфата раст­вор должен содержать свободную фосфорную кислоту. При погружении в раствор железо взаимодействует с фосфорной кислотой и концентрация ее у поверхности металла уменьшается, равновесие реакции нарушается и на металле выделяется осадок двух- и трехзамещенных фосфатов. Образовавшаяся при диссоциации моно­фосфата фосфорная кислота восстанавливает кислот­ность раствора у поверхности металла, что создает усло­вия для дальнейшего протекания процесса. По мере рос­та фосфатного слоя поверхность металла изолируется от воздействия раствора, скорость фосфатирования через некоторое время уменьшается и процесс заканчивается, что заметно по прекращению выделения пузырьков во­дорода.

Процесс фосфатирования протекает особенно эффек­тивно при температуре 90—100° С. Ускорение процесса достигается при введении азотнокислых или азотистокислых солей, являющихся деполяризаторами; при этом резко сокращается доля процесса, протекающего с вы­делением водорода.

Защитная способность фосфатных пленок, полученных в присутствии ускорителей (так называемых уско­ренным фосфатированием), ниже, чем пленок, получен­ных без ускорителей. Поэтому ускоренное фосфатирова­ние преимущественно применяют для создания (замены) грунта под лакокрасочные покрытия, или для полу­чения электроизоляционных фосфатных пленок.

Холодное фосфатирование можно осуществлять пу­тем увеличения концентрации свободной фосфорной кис­лоты и введения солей азотной, азотистой и плавиковой кислот.

Толщина фосфатных пленок зависит от режима и состава раствора, а также от способа подготовки по­верхности обрабатываемых изделий. На полированной стали в обычных растворах образуются мелкокристаллические пленки толщиной 2—4 мкм. При крупнокри­сталлическом строении обеспечивается более продолжи­тельный доступ раствора к металлу и формируются пленки толщиной 10—15 мкм, а иногда и больше. В растворах для холодного фосфатирования получаются пленки толщиной до 6 мкм. Размер фосфатируемых из­делий меняется незначительно по той причине, что на­ряду с ростом пленки размеры несколько уменьшаются в результате травления в фосфорной кислоте и в кислых фосфорнокислых солях.

Чаще и с лучшим эффектом фосфатируются изделия из углеродистой и малолегированной стали и чугуна. Высоколегированные стали фосфатируются с трудом, цветные металлы фосфатируются сравнительно редко.

Химическое фосфатирование углеродистой стали

В ванну загружают соль МАЖЕФ из расчета 32— 35 г/л, заливают водой и, периодически помешивая, кипятят в течение 15—20 мин. Затем нагрев прекраща­ют, определяют и корректируют кислотность раствора. Некоторый избыток препарата берут потому, что в про­цессе кипячения часть его разлагается. Общую кислот­ность раствора определяют титрованием по фенолфта­леину. На титрование 10 мл раствора должно пойти 28—30 мл децинормального раствора NaOH. Свободную кислотность определяют в присутствии индикатора ме­тилоранжа. На титрование 10 мл пробы должно пойти 3—4 мл децинормального раствора NaOH. Количество щелочи, пошедшей на титрование, условно выражают в точках. Общая кислотность фосфатирующего раство­ра должна соответствовать 28—30 точкам, а свободная кислотность 3—4 точкам. Отношение общей кислотности к свободной составляет 7—10. Фосфатирование произво­дят при температуре 97—98° С. Продолжительность про­цесса в зависимости от состава обрабатываемого мате­риала и способа подготовки его поверхности составляет 60—120 мин. Окончание процесса определяют по прекращению выделения пузырьков водорода, после чего изделия дополнительно выдерживают в ванне в течение 10—15 мин для кристаллизации пленки.

Расход препарата МАЖЕФ на фосфатирование 1 м2 поверхности металла составляет 120—140 г. Как было указано, в этом растворе не удается получать фосфатные пленки нужного качества при наличии в стали (в значительных количествах) таких легирующих ком­понентов, как хром, медь, вольфрам, кремний и ванадий, Корректирование ванны осуществляют по показани­ям кислотности. При повышенной кислотности ванну разбавляют водой, при пониженной общей кислотности в ванну вводят соль МАЖЕФ.

n — число точек фосфатирующего раствора по ана­лизу.

После добавления в ванну соли МАЖЕФ раствор кипятят в течение 20—30 мин, а затем понижают температуру до 96—98° С и продолжают фосфатировать. Повышенное содержание свободной кислоты уменьшают, добавляя в раствор углекислый марганец.

Вредно сказывается наличие в растворе примесей алюминия, мышьяка, свинца, сульфитов и хлоридов. Ионы хлора допускаются лишь в следах, ионы SO3(2-) не свыше 0,3%. При содержании в растворе 0,066—0,1 г/л Α12Ο3 продолжительность фосфатирования увеличивает­ся, пленки получаются неоднородными, с пониженной стойкостью против коррозии. Отрицательно сказывается на качестве фосфатных пленок наличие в растворе 0,03 г/л свинца; 0,05% мышьяка приводят к появлению на пленке красноватых пленок. При наличии таких при­месей раствор необходимо заменить.

Недоброкачественные фосфатные пленки могут быть удалены в 10—15%-ном растворе соляной кислоты или в 15—20%-ном горячем растворе NaOH. При повтор­ном фосфатировании получаются более крупнокристал­лические пленки с пониженной защитной способностью.

Ускоренное фосфатирование

Фосфатирование без специальной очистки поверхно­сти изделий можно осуществлять путем введения в рас­твор оксалата цинка, который удаляет ржавчину в про­цессе формирования фосфатной пленки.

  • 33—35 г/л монофосфата цинка,
  • 49—53 г/л азотнокислого цинка,
  • 13—14 г/л фосфорной кислоты,
  • 0,1 г/л оксалата цинка.

Общая кислотность 65—80 точек, свободная кислотность 12-—15 точек, температура раст­вора 92—98° С, продолжительность обработки 15—40 мин.

Оксалат цинка готовят исходя из азотнокислого цинка и щавелевокислого натрия. При смешивании раст­воров этих солей выпадает осадок щавелевокислого цин­ка, который отфильтровывают, сушат и затем применя­ют для приготовления фосфатирующего раствора.

Ускоренное фосфатирование стали в растворах цин­ковых солей дает пленки с лучшей защитной способ­ностью, чем фосфатирование в растворах соли МАЖЕФ.

Такой раствор содержит:

  • 35—37 г/л монофосфата цинка,
  • 52—54 г/л азотнокислого цинка,
  • 15—16 г/л фосфорной кислоты.

Общая кислотность составляет 60—75 точек, свободная кислотность 12—15 точек. Температура рас­твора 85—95° С, продолжительность фосфатирования 15— 20 мин.

В процессе работы раствор корректируют, до­бавляя концентрат, содержащий 470—500 г/л азотнокис­лого цинка, 460—480 г/л монофосфата цинка, 170— 180 г/л фосфорной кислоты и воды до общего объема 1 л.

Черные фосфатные пленки с улучшенными защитны­ми свойствами получают последовательной обработкой деталей в двух растворах. Первый раствор содержит 1 г/л кальцинированной соды, 23 г/л фосфорнокислого закисного железа, 8 г/л окиси цинка, 32 г/л ортофосфорной кислоты. Общая кислотность не менее 56 точек, свободная 8—14 точек. Температура раствора 92—97° С, продолжительность фосфатирования 10 мин. После про­мывки в указанном растворе и в воде детали погружают на 5 мин в 9%-ный раствор калиевого хромпика при 80—95° С. Снова промывают, обрабатывают в мылыно-содовом растворе, промывают в горячей воде и погру­жают в ванну для второго фосфатирования. Этот рас­твор содержит 150 г/л азотнокислого цинка, 30 г/л соли МАЖЕФ, 3 г/л углекислой соды. Общая кислотность не менее 80 точек, свободная кислотность 1,5—3,5 точек. Температура раствора 50—60° С, продолжительность обработки 10—15 мин. После второго фосфатирования детали погружают на 2—3 мин в горячий мыльно-содо­вый раствор, затем пленку сушат и пропитывают мине­ральным маслом.

Холодное фосфатирование

Для приготовления раствора 1 в ванну загружают необ­ходимое количество соли МАЖЕФ и после кипячения и отстаивания добавляют азотнокислый цинк и фтористый натрий. Для повышения кислотности раствора на одну точку добавляют 1—1,5 г соли МАЖЕФ, 2—3 г азотно­кислого цинка и 0,02—0,03 г фтористого натрия.

Для приготовления раствора 2 используют концент­рат, содержащий 75—80 г/л монофосфата цинка, 700—750 г/л азотнокислого цинка, 150—160 г/л фосфорной кислоты, 37—40 г/л кальцинированной соды и воды д0 объема 1 л. Для получения 100 л рабочего раствора к 85 л воды добавляют при перемешивании 12 л концент­рата 1,6 л раствора едкого натра (280—300 г/л), после чего вводят недостающее до 100 л количество воды и 30—40 г азотисто-кислого натрия. Если pΗ приготовлен­ной ванны ниже требуемого значения, добавляют раст­вор едкого натра.

Технология фосфатирования

Лучшим методом подготовки поверхности к фосфатированию является гидроабразивная обработка. Не рекомендуется обезжиривание изделий в щелочных растворах и еще в меньшей степени травление в кисло­тах. Не обработанная абразивами поверхность при про­чих равных условиях имеет фосфатную пленку с пони­женной коррозионной стойкостью.

Фосфатирующие ра­створы рекомендуется готовить на конденсате или умяг­ченной воде. Крупные стальные детали загружают в ванну на стальных подвесках, мелкие — в перфориро­ванных корзинах или на сетках. Для повышения стой­кости стальных деталей против коррозии их обрабаты­вают в течение 5—15 мин в 5—10%-ном растворе бихромата калия или натрия при температуре 70—80° С Повышение защитной способности дает гидрофобизация фосфатных пленок; фосфатированные детали погружают на 5—7 мин в 10%-ный раствор гидрофобизирую-щей кремнеорганической жидкости ГКЖ-94 в бензине Б-70, после чего выдерживают их на воздухе до испаре­ния следов бензина, а затем сушат при ПО—100°С в течение 40—50 мин. Гидрофобизированные фосфатные пленки не смачиваются водой и по стойкости против коррозии не уступают лакокрасочным покрытиям.

Ссылка на основную публикацию
Adblock
detector