3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методика определения давления насыщенных паров нефтепродуктов

ХИМИЯ НЕФТИ

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Определение давления насыщенных паров

Нефть и нефтепродукты характеризуются определенным давлением насыщенных паров, или упругостью нефтяных паров. Давление насыщенных паров является нормируемым показателем для авиационных и автомобильных бензинов, косвенно характеризующим испаряемость топлива, его пусковые качества, склонность к образованию паровых пробок в системе питания двигателя.

Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров при данной температуре является сложной функцией состава бензина и зависит от объема пространства, в котором находится паровая фаза. Поэтому для получения сравнимых результатов практические определения необходимо проводить при стандартной температуре и постоянном соотношении паровой и жидкой фаз. С учетом изложенного выше давлением насыщенных паров топлив называют давление паровой фазы топлива, находящейся в динамическом равновесии с жидкой фазой, измеренное при стандартной температуре и определенном соотношении объемов паровой и жидкой фаз. Температура, при которой давление насыщенных паров становится равным давлению в системе, называется температурой кипения вещества. Давление насыщенных паров резко увеличивается с повышением температуры. При одной и той же температуре большим давлением насыщенных паров характеризуются более легкие нефтепродукты.

В настоящее время существует несколько способов определения ДНП веществ, которые можно разделить на следующие группы:

  1. Статический метод.
  2. Динамический метод.
  3. Метод насыщения движущегося газа.
  4. Метод изучения изотерм.
  5. Метод эффузии Кнудсена.
  6. Хроматографический метод.

Статический метод

На основе прямого статического метода создан ряд эксперименальных установок для исследования ДНП нефтепродуктов.

В нефтепереработке вследствие своей простоты широкое применение получил стандартный метод с использованием бомбы Рейда (ГОСТ 1756-2000). Бомба состоит из двух камер: топливной 1 и воздушной 2 с соотношением объемов соответственно 1:4, соединенных с помощью резьбы. Давление, создаваемое парами испытуемого топлива, фиксируется манометром 3, прикрепленным к верхней части воздушной камеры. Испытание проводят при температуре 38,8°С и давлении 0,1 МПа, обеспечиваемой специальной термостатированной баней.

Давление насыщенных паров испытуемой жидкости определяют по формуле:

Определение давления паров в бомбе Рейда дает приближенные результаты, служащие только для сравнительной оценки качества моторных топлив.

К достоинствам прибора относится простота конструкции и экспериментирования, к недостаткам — постоянное соотношение жидкой и паровой фаз и грубость метода (погрешность определения ДНП бензинов достигает 15-20%).

Расхождения между дайными, полученными с помощью бомбы Рейда и методом НАТИ, составляют 10-20 %.

Динамический метод

Метод насыщения движущегося газа

Метод изучения изотерм

Метод изучения изотерм даёт наиболее точные, по сравнению с другими способами, результаты, особенно при высоких температурах. Этот способ заключается в исследовании зависимости между давлением и объёмом насыщенного пара при постоянной температуре. В точке насыщения изотерма должна иметь излом, превращаясь в прямую. Считается, что этот метод пригоден для измерения ДНП чистых веществ и непригоден для многокомпонентных, у которых температура кипения — величина неопределённая. Поэтому он не получил распространения при измерении ДНП нефтепродуктов.

Метод эффузии Кнудсена

Метод эффузии Кнудсена применим в основном для измерения очень низких давлений (до 100 Па). Этот метод даёт возможность находить скорость эффузии пара по количеству конденсата при условии полной конденсации эффундирующего вещества. Установки, основанные на этом методе, имеют следующие недостатки: они являются установками однократного измерения и требуют разгерметизации после каждого измерения, что при наличии легкоокисляющихся и нестойких веществ нередко приводит к химическому превращению исследуемого вещества и искажению результатов измерений. Создана экспериментальная установка, лишенная указанных недостатков, но сложность конструкции позволяет применить её только в специально оснащенных лабораториях. Этот метод применяется в основном для измерения ДНП твёрдых веществ.

Метод эффузии Кнудсена

Однако, при анализе таких сложных смесей углеводородов, как нефтепродукты, возникают трудности не только при разделении углеводородов, относящихся к различным классам, но и при идентификации отдельных компонентов этих смесей.

Пересчет давления насыщенных паров

В технологических расчетах часто приходится производить пересчет температур с одного давления на другое или давления при изменении температуры. Для этого имеется множество формул. Наибольшее применение получила формула Ашворта:

Уточненная В. П. Антонченковым формула Ашворта имеет вид:

Для пересчета температуры и давления удобно также пользоваться графическими методами.

Наиболее распространенным графиком является график Кокса, который построен следующим образом. Ось абсцисс представляет собой логарифмическую шкалу, на которой отложены величины логарифма давления (lgP), однако для удобства пользования на шкалу нанесены соответствующие им значения Р. На оси ординат отложены значения температуры. Под углом 30° к оси абсцисс проведена прямая, обозначенная индексом «Н20», которая характеризует зависимость давления насыщенных паров воды от температуры. При построении графика из ряда точек на оси абсцисс восстанавливают перпендикуляры до пересечения с прямой Н20 и полученные точки переносят на ось ординат. На оси ординат получается шкала, построенная по температурам кипения воды, соответствующим различным давлениям ее насыщенных паров. Затем для нескольких хорошо изученных углеводородов берут ряд точек с заранее известными температурами кипения и соответствующими им значениями давления насыщенных паров.

Оказалось, что для алканов нормального строения графики, построенные по этим координатам, представляют собой прямые линии, которые все сходятся в одной точке (полюсе). В дальнейшем достаточно взять любую точку с координатами температура — давление насыщенных паров углеводорода и соединить с полюсом, чтобы получить зависимость давления насыщенных паров от температуры для этого углеводорода.

Несмотря на то что график построен для индивидуальных алканов нормального строения, им широко пользуются в технологических расчетах применительно к узким нефтяным фракциям, откладывая на оси ординат среднюю температуру кипения этой фракции.

Кроме графика Кокса для пересчета давления насыщенных паров углеводородов и их смесей в зависимости от температуры используется также график Максвелла.

Для пересчета температур кипения нефтепродуктов с глубокого вакуума на атмосферное давление используется номограмма UOP, по которой, соединив две известные величины на соответствующих шкалах графика прямой линией, получают на пересечении с третьей шкалой искомую величину Р или t. Номограммой UOP в основном пользуются в лабораторной практике.

Давление насыщенных паров смесей и растворов в отличие от индивидуальных углеводородов зависит не только от температуры, но и от состава жидкой и паровой фаз. Для растворов и смесей, подчиняющихся законам Рауля и Дальтона, общее давление насыщенных паров смеси может быть вычислено по формулам:

В области высоких давлений, как известно, реальные газы не подчиняются законам Рауля и Дальтона. В таких случаях найденное расчетными или графическими методами давление насыщенных паров уточняется с помощью критических параметров, фактора сжимаемости и фугитивности.

Методическое указание к лабораторному практикуму » Определение давления насыщенных паров нефтепродуктов»

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ

Пар, находящийся в равновесии с жидкостью, является насыщенным. В состоянии насыщенные пары обладают наибольшим давлением при данной температуре. Для индивидуальных жидких веществ давление насыщенного пара является физической константой, зависящей только от свойств данной жидкости и температуры. Для жидкостей неоднородного состава, таки как, например бензин, давление насыщенных паров при данной температуре является сложной функцией состава бензина и зависит от объема пространства, в котором находится паровая фаза. Поэтому для получения сравнимых результатов практических определений необходимо поддерживать определенное соотношение паровой и жидкой фаз постоянным, т.е. проводить определение в стандартном аппарате

Давление насыщенных паров-важная характеристика нефтей и нефтепродуктов, характеризует испаряемость и зависит от их фракционного состава. Оно свидетельствует о наличии в них растворенных газов и низкокипящих фракций, склонности к испарению, безопасности транспортировки, хранение и применение. Чем больше в топливе содержится легкокипящих углеводородов, тем выше давление насыщенных паров. Давление насыщенных паров возрастает при повышении температуры нагрева нефтепродукта.

Давление насыщенных товарных авиационных и автомобильных бензинов является техническим показателем качества этих топлив-нижний предел характеризует наличие пусковых фракций, а верхний позволяет судить о физической стабильности данного топлива и возможности возникновения паровых пробок. Чем выше давление насыщенных паров бензина, тем большее количество паровой фазы содержится в топливно-воздушной с

Давление насыщенных паров измеряется в кПа (Па) и мм.рт.ст. (1мм.рт.ст=133,3 Па=0,133кПа)

У летних сортов автомобильных бензинов давление насыщенных паров недолжно быть выше 66,6 кПа. Зимние сорта для облегчения пуска двигателя в холодное время года имеют большее давление насыщенных паров 66,3-99,3 кПа. Для авиационных бензинов образование паровых пробок наиболее опасно, давление насыщенных паров для надежного пуска должно быть в пределах 29,3-47,9 кПа.

Показатели качества «давление насыщенных паров» и «фракционный состав» тесно связаны между собой: чем ниже температура начала кипения и температура выкипания 10 % бензина, чем выше давление насыщенных паров этого бензина и наоборот.

Определение давления насыщенных паров моторных топлив проводится в герметичной стандартной металлической бомбе Рейда путем замера давления по манометру при 38ᵒС

ОПИСАНИЕ ЛАБОРАТОРНОГО ПРИБОРА

Прибор для определения давления насыщенных паров состоит из металлической бомбы, манометра и водяной бани (рис 1). Металлическая бомба имеет топливную и воздушную камеры, которые соединяются между собой. На верху воздушной камеры находится манометр.

Рисунок 1 «Аппарат для определения давления насыщенных паров»

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1.Разберите металлическую бомбу, отделив воздушную камеру от топливной

2. Заполните топливную камеру испытуемым нефтепродуктом до верхнего края

3.Соедините топливную камеру с воздушной. Собранный аппарат опрокиньте, чтобы находящееся в топливной камере проба стекла в воздушную камеру, и сильно встряхните в направлении, параллельном продольной оси прибора, повторяя эту операцию несколько раз.

4. Погрузите бомбу в водяную баню так, чтобы воздушная камера находилась в воде ,а манометр-выше уровня воды . При погружении не должно быть утечки испытуемого топлива.

5 Через 5 минут отметьте давление по показанию манометра. Выньте аппарат из бани, встряхните сильно несколько раз и снова вставьте в баню. Повторяйте эти операции каждые 2 минуты до тех пор, пока показания манометра перестанут изменятся. Отметьте «нескорректированное давление насыщенных паров» испытуемого нефтепродукта (Рнм )

6. Определите поправку к «нескорректированному» давлению насыщенных паров на изменения воздуха и насыщенных паров воды в воздушной камере, вызванное различием между исходной температурой воздуха и водяной бани по таблице 1

Определите «исправленное» давление насыщенных паров нефтепродукта –Р, вычтя определённую поправку (ω P ) из «нескорректированного» давления насыщенных паров (Рнс), если температура окружающего воздуха ниже 37,8 ᵒС, или прибавив, если эта температура выше 37,8 ᵒС.

ГОСТ 1756-52
Нефтепродукты. Методы определения давления насыщенных паров

Купить ГОСТ 1756-52 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Распространяется на сырую нефть, летучие невязкие нефтепродукты и моторные топлива и устанавливает следующие методы определения давления насыщенных паров: А — для нефти и нефтепродуктов с давлением насыщенных паров до 180 кПа; Б — для нефти и нефтепродуктов с давлением насыщенных паров свыше 180 кПа; С — для авиационного бензина; Д — для моторных топлив. Стандарт не распространяется на сниженные нефтяные газы.

  • Заменяет ГОСТ 1756-42
  • Заменен на ГОСТ 1756-2000 «Нефтепродукты. Определение давления насыщенных паров» ИУС 1-2001

Переиздание (январь 1988 г.) с Изменениями № 1, 2.

Оглавление

I Аппаратура и материалы

III Подготовка к испытанию

IV Проведение испытания

V Обработка результатов

VI Точность метода

VII Определение давления насыщенных паров до 1,8*10 в кв. кПа

VIII Определение давления насыщенных паров свыше 1,8*10 в кв. кПа

IX Определение давления насыщенных паров около 0,5*10 в кв. кПа для авиационного бензина

Приложение (обязательное) Аппаратура для определения давления насыщенных паров

Приложение 2 (обязательное) Расчет поправочного коэффициента и значения давления насыщенных паров испытуемого нефтепродукта

Этот ГОСТ находится в:

  • Раздел Экология
    • Раздел 75 ДОБЫЧА И ПЕРЕРАБОТКА НЕФТИ, ГАЗА И СМЕЖНЫЕ ПРОИЗВОДСТВА
      • Раздел 75.080 Нефтяные продукты в целом
  • Раздел Электроэнергия
    • Раздел 75 ДОБЫЧА И ПЕРЕРАБОТКА НЕФТИ, ГАЗА И СМЕЖНЫЕ ПРОИЗВОДСТВА
      • Раздел 75.080 Нефтяные продукты в целом

Организации:

Petroleum products. Methods for determination of saturated vapours pressure

  • ГОСТ 2517-85Нефть и нефтепродукты. Методы отбора проб. Заменен на ГОСТ 2517-2012.
  • ГОСТ 25336-82Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры
  • ГОСТ 400-80Термометры стеклянные для испытаний нефтепродуктов. Технические условия

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НЕФТЕПРОДУКТЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

УДН 662.6.001.4 : 621.43 : 006.354

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения давления насыщенных паров

Methods for determination of saturated vapours pressure (CT СЭВ 3654—82)

ОКСТУ 0209 ГОСТ 1756—42

Утвержден Управлением по стандартиэацни при Совете Министров СССР 29.12.1952 г. Срок введения установлен

Проверен в 1983 г. Постановлением Госстандарта от 06.05.83 Ns 2184

срок действия продлен до 01.01.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на сырую нефть, летучие невязкие нефтепродукты и моторные топлива и устанавливает следующие методы определения давления насыщенных паров:

А — для нефти и нефтепродуктов с давлением насыщенных паров до 180 кГТа;

Б — для нефти и нефтепродуктов с давлением насыщенных паров свыше 180 кПа;

С — для авиационного бензина;

Д — для моторных топлив.

Настоящий стандарт не распространяется на сжиженные нефтяные газы.

Стандарт полностью соответствует СТ СЭВ 3654—82.

(Измененная редакция, Изм. № 2).

1а. Определение давления насыщенных паров моторных топлив.

Сущность метода заключается в измерении давления насыщенных паров моторных топлив в бомбе, состоящей из топливной и воздушной камер, при температуре 37,8°С.

( Введен дополнительно, Изм. № 2).

20. Проведение испытания

20.1. Собранный аппарат опрокидывают, чтобы находящаяся в топливной камере проба могла стекать в воздушную камеру, и сильно встряхивают в направлении, параллельном продольной оси прибора.

20.2. Аппарат погружают в водяную баню температурой (37,8±0,1)°С в наклонном положении так, чтобы место соединения топливной и воздушной камер находилось ниже уровня воды и чтобы можно было проследить: нет ли утечки паров топлива.

20.3. Убедившись в отсутствии утечки, погружают аппарат в воду настолько, чтобы уровень воды был не менее чем на 25 мм выше верхнего края воздушной камеры. В продолжение всего испытания следят за тем, чтобы не было утечки паров. Если замечена утечка, испытание проводят повторно на новой пробе.

20.4. Через 5 мин после погружения собранного прибора в водяную баню следует слегка постучать по пружинному манометру и снять показание манометра. Затем вынимают аппарат из бани, опрокидывают, сильно встряхивают, и как можно быстрее, не давая прибору охладиться, снова помещают в баню.

Встряхивание и снятие показаний манометра повторяют не менее 5 раз с интервалом не менее 2 мин до тех пор, пока по крайней мере два последовательных показания манометра не будут идентичными, что говорит о равновесии. На эти операции требуется 20—30 мин.

Снимают конечное показание манометра с погрешностью не более 0,3 кПа, если манометр имеет промежуточные деления через 0,5 кПа, и с погрешностью до 0,5 кПа, если промежуточные деления нанесены через 1,0—2,5 кПа. Регистрируют это показание как «нескорректированное давление насыщенных паров» испытуемого продукта.

20.5. Немедленно отсоединяют пружинный манометр, проверяют его показания по ртутному манометру и регистрируют полученное значение как давление насыщенных паров, если подготовка воздушной камеры проводилась по п. 19.2, или используют показание ртутного манометра для дальнейшего расчета, если подготовка воздушной камеры проводилась по п. 19.3.

20.6. Отсоединяют воздушную камеру от топливной камеры и от манометра и полностью освобождают их от остатков исследуемого продукта.

Воздушную камеру наполняют водой с температурой выше Л2°С и дают ей стечь.

Повторяют такую промывку не менее пяти раз.

Если промывка воздушной камеры осуществляется в ванне, необходимо предотвратить попадание в камеру небольших, незамет-

ных для глаза пленок испытуемого продукта, плавающих на поверхности воды. Поэтому верхнее и нижнее отверстие камеры при прохождении через поверхность воды должны быть закрытыми.

Топливную камеру после тщательного удаления остатков исследуемого продукта погружают в ледяную баню для следующего испытания.

Удаляют из трубки пружинного манометра оставшуюся жидкость.

В случае испытания нефти и нефтепродуктов после каждого испытания следует промывать трубку манометра летучим, растворителем (бензином).

21. Обработка результатов

21.1. В показание ртутного манометра вносят поправку, в соответствии с табл. 2, на изменение давления водяного пара и воздуха в камере при нагревании от исходной температуры воздуха до 37,8°С.

ГОСТ 28781-90 Нефть и нефтепродукты. Метод определения давления насыщенных паров на аппарате с механическим диспергированием

М ЕЖГОСУДАРСТВЕН НЫЙ С ТАНДАРТ

НЕФТЬ И НЕФТЕПРОДУКТЫ

МЕТОД ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ
НА АППАРАТЕ С МЕХАНИЧЕСКИМ ДИСПЕРГИРОВАНИЕМ

М ЕЖГОСУДАРСТВЕН НЫЙ С ТАНДАРТ

НЕФТЬ И НЕФТЕПРОДУКТЫ

Метод определения давления насыщенных паров
на аппарате с механическим диспергированием

Petroleum and petroleum products.
Method for determination of saturated vapors pressure by
mechanical dispersing

Настоящий стандарт устанавливает метод определения давления насыщенных паров в нефтях, летучих невязких нефтепродуктах и моторных топливах.

Метод заключается в измерении давления насыщенных паров испытуемых продуктов при температуре (37,8 ± 0,1) °С и соотношении объемов, занимаемых испытуемым нефтепродуктом и его парами, 1:4, с предварительным диспергированием анализируемой пробы в аэрозольное состояние.

Требования настоящего стандарта являются обязательными.

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

Аппарат типа «Вихрь» (черт. 1).

Схема аппарата «Вихрь»

1 — термометр; 2 — манометр; 3 — редуктор для регулировки расхода воздуха; 4 — диспергирующее устройство; 5 — воздушная камера; 6 — термостатирующая рубашка; 7 — топливная камера; 8 — термостат

Термостат жидкостной любой марки, обеспечивающий поддержание температуры 37,8°С с точностью ± 0,1 °С.

Термометры типов Т Н -6 по ТУ 92.887.019 и ТЛ-4 № 2 по ТУ 25.2021-003.

Манометры по ГОСТ 2405 с пределами измерений:

60 кПа (0,6 кгс/см 2 ) — для нефтепродуктов с давлением насыщенных паров от 0 до 40 кПа;

100 к П а (1 кгс/см 2 ) — для нефтепродуктов с давлением насыщенных паров свыше 40 до 100 кПа;

16 0 кПа (1,6 кгс/см 2 ) — для нефтепродуктов с давлением насыщенных паров свыше 100 кПа до 160 кПа;

250 кПа (2,5 кгс/см 2 ) — для нефтепродуктов с давлением насыщенных паров свыше 160 кПа.

Шланги резиновые с внутренним диаметром 5 — 8 мм.

Секундомер любого типа, обеспечивающий измерение с точностью не менее 0,2 с.

Устройство для заполнения топливной камеры (черт. 3).

Баня, обеспечивающая охлаждение топливной камеры, пробоотборника с пробой и сосуда с хлористым натрием.

Редуктор или ротаметр воздушный любого типа, обеспечивающий регулировку давления от 0 до 200 кПа.

Воздух технический из баллона или от компрессора любого типа.

Вода дистиллированная с рН 5,4 — 6,6.

2. ОТБОР ПРОБ

2.1. Пробы отбирают по ГОСТ 2517 , объем пробы не менее 500 см 3 .

2.2. Пробу хранят при температуре не выше 20 °С. Не допускается проводить испытания на пробе, подвергавшейся другим испытаниям.

2.3. Испытуемую пробу, топливную камеру и насыщенный раствор хлористого натрия, используемый для заполнения топливной камеры, охлаждают не менее 30 мин в охладительной бане при температуре от 0 до минус 4 ° С.

Примечан ие . При анализе продуктов из трубопровода допускается отбирать пробы непосредственно в топливную камеру аппарата (черт. 2).

Схема отбора проб из трубопровода

1 — трубопровод; 2 — п робозаборное устройство; 3 — кран для ручного отбора пробы; 4 — топливная камера аппарата; 5 — насос; 6 — отборный клапан

3. ПОДГОТОВКА К ИСПЫТАНИЮ

3. 1 . Аппарат «Вихрь» устанавливают в вытяжном шкафу или на лабораторном столе с выводом паров в вытяжной шкаф.

3.2. Устанавливают на аппарате пружинный манометр и ртутный термометр.

3.3. К аппарату через воздушный редуктор подключают линию сжатого воздуха и устанавливают давление от 0,14 до 0,20 МПа.

3.4. Аппарат подключают к термостату и устанавливают в воздушной камере температуру (37,8 ± 0,1) ° С.

3.5. Аппарат проверяют на герметичность в соответствии с инструкцией по эксплуатации подачей сжатого воздуха.

Аппарат считают герметичным, если давление в системе не меняется в течение 0,5 мин. После этого сбрасывают давление воздуха.

При отсутствии герметичности устраняют неисправность согласно инструкции по эксплуатации.

3.6. Топливную камеру заполняют испытуемым продуктом с помощью специального устройства (черт. 3), вытесняя испытуемую пробу из пробоотборника насыщенным раствором хлористого натрия до полного ее заполнения, т.е. до тех пор, пока из верхнего штуцера топливной камеры не начнет выливаться испытуемый продукт. Камеру закрывают. Время заполнения не должно превышать 5 мин.

Схема заполнения топливной камеры

1 — склянка с насыщенным раствором хлористого натрия; 2 — пробоотборник с нефтепродуктом; 3 — топливная камера аппарата

3.7. После заполнения топливной камеры пробоотборник с оставшимся продуктом герметично закрывают, помещают в охладительную баню и хранят там до окончания испытания.

Перед началом испытания нефти и нефтепродуктов на новом аппарате, а также при замене комплектующих аппарата для контроля правильности результатов измерения используют стандартные образцы давления паров газожидкостной равновесной системы ГСО 4093-87 — ГСО 4096-87.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4. 1 . Топливную камеру присоединяют к аппарату, помещая ее в термостатирующее устройство. Затем включают диспергирующее устройство и открывают вентили топливной камеры, при этом испытуемый продукт перетекает в воздушную камеру, где диспергируется и испаряется.

После того, как давление в системе достигнет максимального значения и останется неизменным в течение 2 мин, записывают показания манометра.

4.2. После испытания сливают испытуемый продукт. Остатки пробы удаляют из топливной и воздушной камеры продувкой воздухом в течение 10 мин.

4.3. После испытания нефти перед продувкой воздухом проводят промывку системы растворителем до прекращения изменения его окраски.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

За результат испытания принимают среднеарифметическое значение результатов двух определений.

При использовании ГСО давление насыщенных паров вычисляют по формуле

где P 1 — среднеарифметическое значение двух определений давления насыщенных паров, кПа;

K — поправочный коэффициент (расчет приведен в приложении 1).

6. ТОЧНОСТЬ МЕТОДА

Два результата определений, полученные одним исполнителем, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 0,9 кПа (7 мм р т. с т.).

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 2,4 кПа (18 мм рт. ст.).

ПРИЛОЖЕНИЕ
РАСЧЕТ ПОПРАВОЧНОГО КОЭФФИЦИЕНТА

Поправочный коэффициент вычисляют по формуле

где А с.о — аттестованная характеристика стандартного образца, кПа (мм рт. ст.);

X с.о — результат испытания стандартного образца, кПа (мм рт. ст.).

Перечень государственных стандартных образцов, применяемых в определенном диапазоне давления насыщенных паров, приведен в таблице.

Давление насыщенных паров

Лекция 3

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ И ГАЗА

Физико-химические свойства нефти и нефтепродуктов

В основе разработки и переработки нефти и товарных нефтепродуктов лежат физико-химические процессы и управление этими процессами требует знания физических и физико-химических свойств нефти, ее фракций. В большинстве случае из-за сложности состава используются средние значения физико-хими-ческих характеристик нефтяного сырья.

Плотности (нефть, конденсат, н/п).

Плотность является важнейшей характеристикой, позволяющей в совокупности с другими константами оценивать химический и фракционный состав нефти и нефтепродуктов (н/п). Плотность принято выражать абсолютной и относительной величиной.

Абсолютной плотностью считается масса вещества, заключенная в единице объема, плотность имеет размерность кг/м 3 или г/см 3 .

В практике нефтепереработки принято использовать безразмерную величину относительной плотности нефти или н/п, которая равна отношению плотности н/п при 20 0 С к плотности воды при 4 0 С и относительная плотность обозначается ρ4 20 , поскольку плотность выоды при 4 0 С равна единице, числовые значения относительной и абсолютной плотности совпадают.

В некоторых зарубежных странах за стандартную принята одинаковая температура н/п и воды, равная 60 0 F, что соответствует 15,5 0 и относительная плотность обозначается ρ15 15 .

Взаимный пересчет ρ4 20 и ρ15 15 производится по формулам:

где a — поправка на изменение плотности при изменении температуры на один градус и значения средней температурной поправки a для н/п приводятся в специальных таблицах.

В США и других странах широко используется величина плотности, измеряемая в градусах API, связанную с ρ15 15 соотношением:

0 API = 141,5/ ρ15 15 — 131,5 (3)

Для углеводородных и других газов за стандартные условия принимают давление 0,1 МПа (760 мм рт. ст.) и температуру 0 0 С, обычно определяют относительную плотность, т. е. отношение плотности газа к плотности воздуха (1,293 кг/м 3 ). Плотность любого газа при стандартных условиях может быть найдена как частное от деления его молекулярной массы на объем 1 кмоля, т. е. 22,4 м 3 . Плотность газа (ρг, кг/м 3 ) при условиях (давление Р, МПа, температуре Т, К), отличных от стандартных, можно определить по формуле:

где М – молекулярная масса газа.

где М –молекулярная масса газа , кг/кмоль, 22,4 – объем 1 кмоля газа при стандартных условиях (0,101 МПа (760 мм рт. ст.) и 273 К (0 0 С).

Плотность нефтей и н/п уменьшается с повышением температуры и эта зависимость имеет линейный характер и хорошо описывается формулой Д.И. Менделеева:

где ρ4 t — относительная плотность н/п при заданной температуре t,

ρ4 20 — относительная плотность н/п при стандартной температуре (20 0 С).

Необходимо отметить, что уравнение Д.И. Менделеева справедливо для интервала температур от 0 0 С до 150 0 С и погрешность составляет 5-8 %.

В более широком интервале температур, т.е. до 300 0 С и с меньшей погрешностью (до 3 %) зависимость плотности (кг/м 3 ) от температуры рассчитывается по уравнению А.К. Мановяна:

ρ4 t = 1000 ρ4 20 – 0,58/ ρ4 20 ∙ (t-20) –[t-1200(ρ4 20 -0,68]/1000 ∙ (t-20). (6)

Существует несколько методов определения плотности н/п, выбор того или иного метода зависит от имеющегося количества н/п, его вязкости, требуемой точности определения и времени анализа.

Простейшим прибором для определения плотности жидких н/п является ареометр, градуировка ареометра отнесена к плотности воды при 4 0 С и его показания соответствуют ρ4 20 . Точность определения плотности с помощью ареометра составляет 0,001 для маловязких и 0,005 – для вязких н/п.

Для определения плотности высоковязкого (более 200 мм 2 /с при 50 0 С) н/п (ρн) ареометром поступают следующим образом. Н/п разбавляют равным объемом керосина известной плотности (ρк) и измеряют плотность смеси (ρсм) и рассчитывают плотность н/п по формуле:

Более точно (с точностью до 0,0005) плотность н/п определяют с помощью гидростатических весов, которые градуируются по плотности воды при 20 0 С и дают показания ρ t 20.

Наиболее точный результат достигается при определении плотности пикнометром (до 0,00005), в зависимости от агрегатного состояния н/п (газ, жидкость, твердое вещество) и его количества применяются пикнометры разной формы и емкости.

Пикнометрический метод основан на сравнении массы нефтепродукта, взятого в определенном объеме, с массой дистиллированной воды, взятой в том же объеме и при той же температуре. Единственным недостатком пикнометрического способа является продолжительность определения.

Плотность большинства нефтей и н/п меньше единицы и в среднем колеблется от 0,80 до 0,90 г/см 3 , высоковязкие смолистые нефти имеют плотность, близкую к единице, наоборот, нефти из газоконденсатных месторождений и конденсаты очень легкие (ρ4 20 = 0,75 – 0,77 г/см 3 ).

На величину плотности нефти влияет много факторов: содержание растворенных газов и смол, фракционный, а для дистиллятов также и химический состав.

Молекулярная масса

Молекулярная масса нефтей и н/п один из важных показателей, широко используемый при расчете теплоты парообразования, объема пара, парциального давления и других параметров.

Нефть и н/п представляют собой смеси индивидуальных углеводородов и некоторых других соединений, поэтому они характеризуются средней молекулярной массой.

Молекулярная масса н/п тем больше, чем выше их температура кипения.

Для определения молекулярной массы н/п широкое применение получил криоскопический метод, основанный на изменении температуры замерзания растворителя (бензола или нафталина) при добавлении к нему навески н/п.

В редких случаях для определения молекулярной массы применяется эбулиоскопический метод, основанный на изменении приращения температуры кипения растворителя после ввода в него навески испытуемого н/п.

В расчетной практике молекулярную массу часто определяют по эмпирическим формулам, наибольше применение нашла формула Б.П. Воинова:

М = а + bt + ct 2 , (7)

где a, b и c постоянные, значения которых различны для каждой группы углеводородов, t – средняя молекулярная температура кипения н/п, 0 С.

Для парафиновых углеводородов:

М = 60 + 0,3t + 0,001t 2 . (8)

Для нефтяных фракций:

М = (7К-21,5) + (0,76 – 0,04К)t + (0,0003K – 0,00245)t 2 , (9)

где К- характеризующий фактор и изменяется от 10 для 12 в зависимости от значений a, b, с.

В приведенных выше формулах в качестве параметра, характеризующего химический состав, выступает характеризующий фактор, зависящий от плотности.

В формуле, предложенной Р. Хершем, в качестве такого параметра использован коэффициент лучепреломления:

Lg(M) = 1,939436 + 0,0019764t + lg(2,1500-nD 20 ), (10)

где nD 20 – коэффициент рефракции.

Связь между молекулярной массой и относительной плотностью н/п устанавливается формулой Крэга:

В практических расчетах при определении размеров реакторов, испарительных и ректификационных колонн необходимо знать мольный объем жидких н/п или их паров.

Мольный объем жидкости V ’ (м 3 ) вычисляют по формуле:

V ’ = V/N = m/ρ / m/M = M/ ρ, (12)

где N – число молей, m – масса жидкости, кг, М – молекулярная масса, ρ – плотности жидкости, кг/м 3 .

Объем паров можно определить из уравнения Клайперона:

V = m/M ∙ 22,4Ратм/Р ∙ (t + 273)/273, (13)

где m – масса паров, кг, М – молекулярная масса н/п, Р – давление в системе, МПа, Ратм – атмосферное давление, МПа, t – температура, 0 С.

Давление насыщенных паров

Нефть и н/п характеризуются определенным давлением насыщенных паров, или упругостью нефтяных паров. Давление насыщенных паров является нормируемым показателем для авиационных и автомобильных бензинов, косвенно характеризующим испаряемость топлива, его пусковые качества, склонность к образованию пробок в системе питания двигателя.

Аппарат для определе­ния давления насыщенных паров нефтепродуктов

1 — топливная камера; 2 -воздуш­ная камера; 3— манометр

Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров необходимо проводить при стандартной температуре и постоянном соотношении паровой и жидкой фаз.

Температура, при которой давление насыщенных паров становится равным давлению в системе, называется температурой кипения вещества. Давление насыщенных паров резко увеличивается с повышением температуры.

В нефтепереработке широкое применение получил стандартный метод с использованием бомбы Рейда (ГОСТ 1756-2000). Бомба состоит из двух камер: топливной и воздушной с соотношением объемов 1:4, соединенных с помощью резьбы. Давление, создаваемое парами испытуемого топлива, фиксируется манометром, прикрепленным в верхней части воздушной камеры. Испытание проводят при температуре 38,8 0 С, обеспечиваемой термостатированной баней.

Давление насыщенных паров испытуемого н/п определяют формуле:

где Р о ж — давление насыщенных паров испытуемой жидкости при температуре t, Рм – показания манометра, Ратм – атмосферное давление, to — температура окружающего воздуха, 0 С.

Определение давления паров в бомбе Рейда дает приближенные результаты, служащие только для сравнительной оценки качества моторных топлив.

Более точные абсолютные значения давления насыщенных паров получаются при использовании аппарата НАТИ, с помощью которого давление насыщенных паров топлива можно определить в широком интервале температур и при различных соотношениях между объемами паровой и жидкой фаз.

Давление насыщенных паров смесей и растворов в отличие от индивидуальных углеводородов зависит не только от температуры, но и от состава жидкой и паровой фаз. Для растворов и смесей, подчиняющихся законам Рауля и Дальтона, обще давление насыщенных паров смеси (Р о см) может быть вычислено по формулам:

где рi – парциальное давление компонента смеси при заданной температуре, Pi o – давление насыщенных паров компонентов смеси,

x ’ i — мольная дольная компонентов смеси.

Однако в области высоких давлений реальные газы не подчиняются законам Рауля и Дальтона. В таких случаях найденное давление насыщенных паров уточняется с помощью критических параметров, фактора сжимаемости и фугитивности.

Критические параметры

Температура, давление и объем при критическом состоянии очень важны для физики нефти, особенно для высокотемпературных процессов при высоких давлениях.

Критическим состоянием вещества называется такое, при котором исчезает различие (граница) между его жидкой и паровой фазами, т.е. они имеют одни и те же основные свойства. Для каждого вещества существует такая температура, выше которой оно никаким повышением давления не может быть переведено в жидкость. Эта температура называется критической температурой Ткр. Давление насыщенных паров, соответствующее критической температуре, называется критическим давлением Ркр. Объем паров при критической температуре и давлении называется критическим объемом.

Справочник химика 21

Химия и химическая технология

Давление насыщенных паров, методы определения

Для определения давления насыщенных паров в лабораторных условиях существует два метода по ГОСТ 1756—52 и ГОСТ 6668—53. [c.23]

Обычно процесс постепенной перегонки рассчитывают с целью определения выхода и состава дистиллята или остатка с заданными характеристиками качества. При заданном давлении перегонки Р необходимо определить температурные пределы перегонки, а при заданной температуре — конечное давление процесса или давление насыщенных паров остатка. Расчет по уравнению (1.10) выполняют методом графического интегрирования, а по уравнениям (1.11) и(1.12) — итерационным методом. [c.61]

Несмотря на обилие накопленных данных, в лабораторной практике нередко еще возникает необходимость в самостоятельном определении давления насыщенных паров. В таких случаях целесообразно проводить собственные исследования однако можно также воспользоваться различными методами расчета, описанными в разд. 4.4.2. [c.54]

Графические методы определения давления паров по сравнению е расчетными методами обычно проще и требуют меньшей затраты времени. По правилу Дюринга кривую давления паров получают следующим образом. Температуры кипения данного вещества А и эталона Б, соответствующие одному и тому же давлению, представляют в прямоугольной системе координат в виде точки, абсцисса которой равна температуре кипения вещества Б, а ордината — температуре кипения А. Точки, нанесенные для различных давлений, лежат все без исключения на одной и той же прямой. На рис. 38 показана диаграмма Дюринга, характеризующая давление паров уксусной кислоты она построена с использованием воды в качестве эталонного вещества. Давление насыщенных паров уксусной кислоты для какой-либо определен- [c.63]

Определение давления насыщенных паров по ГОСТ 6668—53 (метод Валявского—Бударова) производится в специальном приборе (рис. 9). [c.24]

Период стабильности определяют по методу ГОСТ 6667-75 (ему соответствует рекомендация стран СЭВ по стандартизации РС 1458-68). Метод заключается в окислении этилированного авиационного бензина кислородом воздуха при 110 «С под давлением насыщенных паров испытуемого бензина и определении времени от начала окисления до начала разложения свинца (видимого помутнения бензина). [c.78]

По мере роста темпов дизелизации автомобильного парка топливо широкого фракционного состава будет находить все большее применение. Для оценки его испаряемости, возможно, потребуется использовать методы определения давления насыщенных паров (такие методы разработаны для реактивных топлив) и соотношения пар-жидкость при различных температурах (метод описан в гл. 2). [c.84]

В радиометрическом варианте определения давления насыщенного пара методом Лэнгмюра находят приведенную к единице поверхности потерю массы образца Ад за единицу времени. Согласно Лэнгмюру, [c.178]

Уравнение (10 7) позволяет найти активность, если известны экспериментальные значения давления насыщенного пара Для определения активности используют и другие экспериментальные методы (измерение температур кипения и кристаллизации раст вора ЭДС специальных гальванических элементов и др ) [c.183]

Методы определения давления насыщенных паров нефтепродуктов [c.49]

При определении давления насыщенного пара методом Лангмюра экспериментально находят скорость испарения и по формуле [c.192]

Давление насыщенных паров бензина определяют статическим прямым или косвенным методом. Среди первых широко распространен метод определения в бомбах. В основном используют бомбу Рейда (рис. 5)-прибор, принятый в ряде стран, в том числе и в СССР, в качестве стандартного. [c.27]

Кроме прямого метода по ГОСТ 1756-52 для определения давления на-сыщенньк паров бензина в СССР используют косвенный метод по ГОСТ 6668-53 на приборе Валявского — Бударова. Метод основан на оценке увеличения объема паровоздушной смеси после испарения топлива в газовой бюретке при постоянном давлении и соотношении начальных объемов воздуха и топлива, равном 1 1. Схема прибора Валявского — Бударова для измерения давления насыщенных паров приведена на рис. 6. [c.28]

Определение проводят на сильфонном приборе, разработанном А. А. Соловьевым и Б. А. Маловым, предназначенном для определения давления насыщенных паров реактивных топлив при температурах от 20 до 200 °С и атмосферном давлении [88]. Сущность метода заключается в следующем. Испытуемый образец топлива, помещенный в рабочую полость герметической ячейки, нагревают, и при нагревании топлива в результате повышения давления его насыщенных паров происходит сжатие сильфона. Повышение давления в рабочей полости ячейки через сильфон и дегазированное вакуумное масло, полностью заполняющее измерительную полость ячейки, воспринимается измерительным прибором-вакуумметром. [c.123]

При стандартизации качества бензинов важную роль играют методы оценки основных показателей. Наиболее полная и всесторонняя оценка эксплуатационных свойств может быть получена на полноразмерных двигателях непосредственно в условиях испытаний. Однако такой нуть очень продолжителен, трудоемок и экономически не выгоден. Поэтому многие эксплуатационные свойства бензинов связывают с какими-либо показателями, определяющимися простыми физико-химическими методами, или создают лабораторные ускоренные методы, моделирующие условия применения бензинов. В качестве примера первой группы методов можно привести оценку пусковых свойств бензинов по давлению насыщенных паров и фракционному составу. Пример методов второй группы — определение содержания фактических смол, в котором моделируют испарение бензина во впускном трубопроводе. [c.190]

В дополнение к изложенному ниже рассмотрено еще несколько статических методов определения давления насыщенных паров, в соответствии с которыми [c.58]

Для определения давления насыщенных паров топлив для ГТД при повышенных температурах разработан лабораторный прибор (рис. 8, а) и метод [13, с. 50—56]. Давление паров измеряют помощью нулевого приспособления (манометрическая [c.25]

Определение давления насыщенных паров (метод ЦИАМ— КИИ ГА) Давление насыщенных паров, кПа при 100°С при 150°С — — -ь 40 [c.206]

Определение давления насыщенных паров методом Ва-лявского — Бударова принято в СССР в качестве стандартного (ГОСТ 6668—53) метод служит для оценки склонности моторного топлива к образованию паровых пробок в топливной системе двигателя. Определение проводят при 38°С. [c.25]

ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ ТОПЛИВ (Определение по Валявскому-Бударову) (ГОСТ 6668-53). В отличие от ГОСТ 1756-52 (метод Рейда) Д. п. п. т. по Валявскому-Бударову определяется по приращению объема паровоздушной смеси после испарения топлива в газовой бюретке при постоянном давлении и соотношении начальных объемов воздуха и топлива, равном 1 1. [c.169]

Кинетические методы определения давлений насыщенного пара (метод Лангмюра и Кнудсена) [c.192]

При определении давления насыщенного пара методом Кнудсена меченое вещество, например, металлическую сурьму, содержащую помещают в камеру из индифферентного вещества. Камера имеет отверстие известной площади Смотреть страницы где упоминается термин Давление насыщенных паров, методы определения: [c.183] [c.112] [c.884] [c.54] [c.29] [c.285] [c.12] [c.24] Тепло- и массообмен Теплотехнический эксперимент (1982) — [ c.446 ]

Ссылка на основную публикацию
Adblock
detector