0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Необходимые и достаточные условия для горения

Вопрос 1. Определение процесса горения, необходимые и достаточные условия для горения. Виды горения

ЛЕКЦИЯ 1

РАЗДЕЛ 1. Основные представления о горении

Явления, наблюдающиеся при горении свечи, таковы, что нет ни одного закона природы, который при этом не был бы так или иначе затронут.

ТЕМА 1. ОСНОВЫ ПРОЦЕСОВ ГОРЕНИЯ

Вопросы:

1. Определение процесса горения, необходимые и достаточные условия для горения. Виды горения.

2. Основные характеристики пламени. Температура пламени.

3. Классификация горючих веществ, окислителей и источников зажигания. Химические реакции, протекающие при горении.

В середине XVIII века М.В.Ломоносов впервые высказал предположение о том, что процесс горения — это процесс взаимодействия горючего вещества с кислородом воздуха, т.е. окисление. Французский ученый А. Лавуазье в 1772-76 г. г. экспериментально подтвердил это. В 1883 году французские химики Маляр и Ле-Шателье измерили нормальную скорость распространения пламени. Выдающийся вклад в создание и развитие теории горения внесли представители русской и советской школы. Наш соотечественник, физик и метеоролог В.А. Михельсон в начале 1900-х годов установил зависимость скорости распространения фронта пламени от состава горючей смеси, заложил основы тепловой теории взрывного горения, развил теорию горения газа в горелке Бунзена.

Основоположник советской школы горения, лауреат Нобелевской премии, академик Н.Н. Семенов разработал теорию разветвленных цепных реакций и теплового самовоспламенения (взрыва). Академик Я.Б. Зельдович и профессор Д.А. Франк-Каменецкий создали теорию распространения пламени. Основополагающие исследования наших ученых получили всемирное признание.

Горение — это быстропротекающий (секунды или доли секунд), окислительно-восстановительный, экзотермический,

самоподдерживающийся процесс, часто сопровождающийся свечением и образованием пламени.

Отсутствие какого-либо из указанных признаков будет свидетельствовать о том, что рассматриваемый процесс к горению не относится, например, коррозия металлов, свечение электролампочки, фосфоресценция и т.п.

В понятие горения не входят медленные реакции (низкотемпературное окисление, биохимическое окисление) и очень быстрые (взрывчатые превращения). Горение происходит не только за счет образования оксидов, но также за счет образования фторидов, хлоридов и нитридов. Установлено, что в качестве окислителя в реакциях горения могут выступать кислородсодержащие ангидриды, соли и кислоты элементов переменной валентности (серы, азота, хрома, марганца, хлора и др.).

Реакции окисления экзотермичны, следовательно, при горении выделяется большое количество теплоты. Этим обусловлена высокая температура процессов горения, например, древесины — 700-800°С, нефтепродуктов — 1300-1500°С. Согласно правилу Вант-Гоффа, при повышении температуры на каждые 10°С скорость реакции увеличивается в 2-4 раза, то есть скорость реакции окисления должна быть высокой. Отсюда следует, что в основе процессов горения лежат высокоскоростные и высокотемпературные реакции окисления. При горении образуются нагретые до высокой температуры летучие продукты: С02, Н20, СО и др. Плотность раскаленных продуктов горения в 3-5 раз меньше плотности окружающего воздуха. Поэтому они вытесняются свежим воздухом вверх, т.е. над очагом горения существует непрерывно поднимающийся вверх конвективный поток горячей определения Тс. Начиная с некоторых предельных значений, смеси, как бедные, так и богатые, не способны воспламеняться. Это подтверждается экспериментально. Например, кривая зависимости Тс = f(C) для оксида

от состава смеси

4. Скорость реакции горения зависит от давления и катализаторов, поэтому температура самовоспламенения зависит также и от этих факторов (табл.1). Таблица 1 Изменение температуры самовоспламенения в зависимости от давления

Условия, необходимые для горения.

Известно, что для возникновения горения необходимо наличие:
1. Горючего вещества
2. Окислителя
3. Источника зажигания (энергетический импульс)
Эти три составляющие часто называют треугольником пожара. Если исключить одну из них, то горение возникнуть не может. Это важнейшее свойство треугольника используется на практике для предотвращения и тушения пожаров.

Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность самовоспламенения и горения системы.

Наибольшая скорость горения получается при горении вещества в чистом кислороде, наименьшая (прекращение горения) – при содержании 14–15% кислорода.

Горение веществ может происходить за счет кислорода, находящегося в составе других веществ, способных легко его отдавать. Такие вещества называются окислителями. Приведем наиболее известные окислители.

· Бертолетова соль (KClO3).

· Калийная селитра (KNO3).

· Натриевая селитра (NaNO3).

В составе окислителей содержится кислород, который может быть выделен путем разложения соли, например:

Разложение окислителей происходит при нагревании, а некоторых из них даже под воздействием сильного удара.

2. Продукты горения. Полное и неполное сгорание. Экологические аспекты процессов горения.

В процессе горения образуются продукты сгорания. Состав usшвисит от горящего вещества и условий горения. Продукты сгорания, за исключением окиси углерода, гореть не способны.

Дым, образующийся при горении органических веществ, содержит твердые частицы и газообразные продукты (углекислый газ, окись углерода, азот, сернистый газ и другие). В зависи­мости от состава веществ и условий их горения получается различный по содержанию дым. Дымы, образующиеся при горении разных веществ, отличаются не только составом, но цветом и запахом. По цвету дыма можно определить, какое вещество горит, хотя цвет дыма изменяется в зависимости от условий трения. При горении древесины дым имеет серовато-черный пнет; бумаги, сена, соломы — беловато-желтый; ткани и хлоп­ка— бурый; нефтепродуктов — черный и т. д.

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO2, SO2, P2O5. Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

Углекислый газ или двуокись углерода (СО2) – продукт полного горения углерода. Не имеет запаха и цвета. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни.

Оксид углеродаили угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен.

Сернистый газ (SO2) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом.

ДымПри горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Экологические аспекты процессов горения.Применение природного газа позволяет уменьшить загрязнение атмосферы оксидам серы, твердыми частицами и окисью углерода, однако в атмосферу поступает большое количество оксидов азота, окиси углерода и канцерогенных веществ (3,4-бенз(о)перен). Правильная организация горения, выбор рациональных способов сжигания позволяет свести к минимуму образование вредных веществ и выделение их в воздушный бассейн. Использование природного газа позволяет вести не только пассивную, но и активную борьбу за чистоту воздуха: использование установок для дожигания, использование выбросных газов для подачи в газовый горелки вместо соответствующего количества воздуха.

Экологические проблемы горения. Задача – не навредить при сжигании топлив. Негативные проявления:

-Техногенное тепловыделение соизмеримо с компонентами теплового баланса атмосферы;

— Акустический шум турбулентных пламен при работе авиационных и ракетных двигателей – загрязнитель окружающей среды.

— Выброс вредных продуктов сгорания – окислов азота, окислов металлов, угарного газа (при высоких Тг), окислов серы, канцерогенных веществ – продуктов неполного пиролиза органических горючих, сажи, углекислого газа (при низких Тг) – является причиной: изменения оптических свойств атмосферы и уменьшения потока солнечного излучения, возникновения кислотных дождей, усиления «парникового эффекта», разрушения озонового слоя Земли, негативного воздействия на флору и фауну, здания и конструкции. Общий итог : глобальное потепление, климатические катастрофы (циклоны, бураны, смерчи, цунами, наводнения, засухи, сходы лавин, сели)..

3. Уравнения горения веществ в кислороде и на воздухе, методика их составления. Термодинамика процессов горения. Тепловые эффекты реакций горения.

Общее уравнение реакции горения любого углеводорода
CmHn + (m + n/4) O2 = mCO2 + (n/2) Н2O + Q (8.1)
где m, n — число атомов углерода и водорода в молекуле; Q — тепловой эффект реакции, или теплота сгорания.

Тепловой эффект (теплота сгорания) Q — количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м 3 газа при нормальных физических условиях. Различают высшую Qв и низшую Qн теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).
КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому — активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.
Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению
Q = r1Q1 + r2Q2 + . + rnQn (8.2)
где r1, r2, …, rn — объемные (молярные, массовые) доли компонентов, входящих в смесь; Q1, Q2, …, Qn— теплота сгорания компонентов.
Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н2О и двуокись углерода СО2. При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.
Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода — метана:

1. Н + О2 —› ОН + О
СН4 + ОН —› СН3 + Н2О
СН4 + О —› СН2 + Н2О
2. СН3 + О2 —› НСНО + ОН
СН2 + О2 —› НСНО + О
3. НСНО + ОН —› НСО + Н2О
НСНО + О —› СО + Н2О
НСО + О2 —› СО + О + ОН
4. СО + О —› СО2
СО + ОН —› СО2 + Н

Итог единичного цикла:
2СН4 + 4О2 —› 2СО2 + 4Н2О

Термодинамика горения

Исходный состав горючей смеси характеризуется молярными или массовыми долями компонентов и начальными давлением и температурой. Если состав смеси подобран так, что при её сгорании и горючее, и окислитель полностью преобразуются в продукты реакции, то такая смесь называется стехиометрической. Смеси с избытком топлива называются богатыми, а с недостатком топлива — бедными. Степень отклонения состава смеси от стехиометрического характеризуется коэффициентом избытка топлива (англ. equivalenceratio) [35] :

где YF и YO — массовые доли топлива и окислителя соответственно, а (YF/YO)st — их отношение в стехиометрической смеси. В русскоязычной литературе используется также коэффициент избытка окислителя (или воздуха), обратный коэффициенту избытка топлива.

Адиабатическая температура горения смесей CH4 с воздухом в зависимости от коэффициента избытка топлива. P = 1 бар, T0 = 298,15 K.

Если горение происходит адиабатически при постоянном объёме, то сохраняется полная внутренняя энергия системы, если же при постоянном давлении — то энтальпия системы. На практике условия адиабатического горения приближённо реализуются в свободно распространяющемся пламени (без учёта теплопотерь излучением) и в других случаях, когда потерями тепла из зоны реакции можно пренебречь, например, в камерах сгорания мощных газотурбинных установок или ракетных двигателей.

Адиабатическая температура горения — это температура продуктов, достигаемая при полном протекании химических реакций и установлении термодинамического равновесия. Для термодинамических расчётов используются таблицы термодинамических функций [36] всех компонентов исходной смеси и продуктов. Методы химической термодинамики позволяют рассчитать состав продуктов, конечное давление и температуру при заданных условиях сгорания. В настоящее время доступно много программ, способных выполнять эти расчёты [37] [38] .

Теплота сгорания — это количество теплоты, выделившейся при полном сгорании исходных компонентов, то есть до CO2 и H2O для углеводородных топлив. На практике часть выделившейся энергии расходуется на диссоциацию продуктов, поэтому адиабатическая температура горения без учёта диссоциации оказывается заметно выше той, что наблюдается на практике [39] .

Термодинамический расчёт позволяет определить равновесный состав и температуру продуктов, но не даёт никакой информации о том, с какой скоростью система приближается к равновесному состоянию. Полное описание горения требует знания механизма и кинетики реакций и условий тепло- и массообмена с окружающей средой.

4. Типы пламени и скорость горения. Теории горения: тепловая, цепная, диффузионная.

В общем случае скорость горения зависит от скорости смешения исходных компонентов в зоне прогрева и зоне реакции (для гетерогенных систем), от скорости химических реакций между компонентами, от скорости передачи тепла и активных частиц из зоны реакции к исходной системе. Нормальная скорость горения (и тем более форма фронта горения) зависит от условий течения свежей смеси и продуктов горения (особенно при горении в двигателях).

Поэтому в теории горения рассматривается несколько основных типов пламен. Они неодинаковы по своему научному и практическому значению и степени изученности. Неодинаковы параметры, представляющие наибольший интерес для данного типа пламени. Существенно отличается подход к теоретическому рассмотрению каждого типа пламени. Некоторые различия имеются и в экспериментальных методах.

Перечислим наиболее важные для теории горения типы пламен:

1) ламинарное пламя в гомогенной газовой смеси. К этому же типу относится пламя при горении летучих взрывчатых веществ;

2) ламинарное диффузионное пламя при горении струи горючего газа в окислительной атмосфере. К этому типу примыкает пламя при диффузионном горении жидкого горючего, налитого в цилиндрический сосуд, и т. п.;

3) пламя при горении капли жидкого горючего или частицы твердого горючего в окислительной атмосфере;

4) турбулентные пламена в гомогенных или в предварительно не смешанных газовых смесях;

5) пламя при горении нелетучих взрывчатых веществ, порохов и т. д. в тех случаях, когда существенную роль играет реакция в конденсированной фазе.

Коротко рассмотрим некоторые характеристики основных типов пламен в той мере, в какой это полезно для понимания закономерностей горения конденсированных смесей.

Предварительно следует остановиться на определении скорости горения. При ламинарном горении газовых смесей и гомогенных конденсированных систем большое принципиальное значение имеет понятие нормальной скорости горения (). По определейию, равна скорости перемещения пламени относительно свежей смеси в направлении, перпендикулярном поверхности пламени в данной точке. Размерность в системе СИ — м/сек, однако для скорости горения эта единица пока употребляется редко и только для газовых систем. Обычно величину для газовых систем выражают в см/сек, а для конденсированных систем в мм/сек (если выражать скорость горения конденсированных систем в м/сек, то в обычном диапазоне давлений получаются очень малые дробные числа).

Для гомогенных конденсированных систем чаще всего измеряется скорость горения цилиндрических зарядов, горящих с торца, причем фронт горения полагается плоским (опыт показывает, что в большинстве случаев при наличии надлежащей оболочки это допущение справедливо, и искажения наблюдаются лишь на краях заряда). К тому же для твердых веществ (и достаточно вязких жидких веществ) исходное (твердое или жидкое) вещество неподвижно во время горения. Поэтому в данном случае нормальная скорость горения просто равна видимой скорости пламени (в лабораторной системе координат) и постоянна в различных точках заряда.

Условия возникновения горения как основа пожарной безопасности

Условия возникновения горения необходимо изучать и знать как самим пожарным так и обычному человеку. Ведь знание основ возникновения и распространение огня дает большое преимущество во время тушения различных классов пожара.

Огонь и человек

Огонь это неотъемлемая часть жизнедеятельности человека, огонь сопровождает человека на всем пути его развития. Умение человека пользоваться огнем, добывать его, стремительно увеличило возможности человечества в много раз. Возможность человека добывать и контролировать огонь дало ему возможности обеспечить хранение продуктов питания от порчи, осуществлять обогрев жилища, добычу метала.

Огонь сделал возможным расселение рода людского по всем уголкам планеты Земля, дал возможность запустить пароходы, железную дорогу и отправить человека в космос. Овладение огнем было необходимым фактором для возникновения и жизни семьи. Умение пользоваться огнем дало человеку чувства независимости от циклического изменения тепла и холода, света и темноты.

В то же время всем известный пагубное влияние природного действия огня на человека и среду его обитания Не контролируемое горение способно вызвать значительные разрушительные, а также смертоносные последствия к таким не посредственным проявлениям огненной стихии принадлежат пожары.

Что такое пожар?

Пожар – это неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

Более детальная информация в материале:

Жизнедеятельность человека всегда будет сопровождаться не контролируемым горением – то есть пожарами. Развитие пожара за своими масштабами может зацепить не только национальные интересы страны, но и международные интересы.

Как пример таких пожаров которые вылились в глобальные чрезвычайные происшествия может служить катастрофа на Чернобыльской АЭС, длительные пожары нефтедобывающих комплексов Ирака и как результат войны в Персидском заливе, пожары больших лесных массивов в США, Греции и др. странах Земного шара.

Каждый год на нашей планете возникает приблизительно 7 миллионов пожаров!

Условия возникновения пожара

Основной задачей при обеспечении пожарной безопасности является устранение условий возникновения пожара (горения) и минимизация его последствий. Пожар возникает при одновременном наличии трех основных условий:

Рис. 1. Необходимые условия возникновения пожара.

Горючее вещество вместе с окислителем образуют горючую смесь которой для зажигание не хватает только источника зажигания которым может служить как маленькая искорка так и обычное пламя.

Стоит запомнить вышеприведенный “треугольник огня”, потому что на нем базируются основные направления предупреждения пожаров и способы пожаротушения. Исходя из рис.1. удаление одного из элементов сделает невозможным последующие возникновение горение и как следствие последующие развитие пожара.

Профилактика возникновения пожара

Профилактика предотвращение пожара осуществляется за счет предотвращения образования горючей среды как в технологических процессах так и в хозяйственной деятельности человека в целом.

Основными причинами пожаров является:

  1. Неосторожное обращение с огнем.
  2. Нарушение правил монтажа и эксплуатации электрооборудования и бытовых электроприборов.
  3. Нарушение правил монтажа и эксплуатации приборов отопления и тепло генерирующих установок.
  4. Поджоги.
  5. Баловство детей с огнем.
  6. Техническая неисправность промышленного оборудования.

В следствии вышеизложенных причин ежегодно возникают приблизительно 92% от общего количества пожаров в государстве. Давно известная истина, что пожар легче предупредить, чем потом ее тушить, является актуальной постоянно.

Исходя из этого обеспечение пожарной безопасности является неотъемлемой частью предпринимательской, промышленной деятельности работников предприятий, должностных лиц учебных учреждений, правительственных организаций и частных предпринимателей.

Не достаточное обеспечение пожарной безопасности, а именно обеспечении ее на низком уровне повышает вероятность возникновения пожара, это вызывает соответствующие действия со стороны органов государственного пожарного надзора, действие которых могут достаточно негативно повлиять, в частности, на ведение малого бизнеса.

Со стороны государственного пожарного надзора могут последовать следующие правомерные действия такие как: отказать в выдаче разрешения на начало работы или аренду помещений, штрафы за нарушение правил пожарной безопасности, приостановка эксплуатации помещений, сооружений, оборудования, объектов, и т. д.

Поэтому необходимо знать хотя бы основные требования, организационно-инженерно-технические мероприятия, по обеспечению пожарной безопасности на объектах, в частности те, от которых непосредственно зависит безопасность людей, собственности и личного имущества.

Обращаясь к основному документу любого пожарного инспектора, а именно Правилам пожарной безопасности можно сказать что основными организационными мероприятиями по обеспечению пожарной безопасности являются:

  • четкие обязанностей должностных лиц касающеюся обеспечения пожарной безопасности;
  • назначение приказом начальника (директора) ответственных за пожарную безопасность зданий, сооружений, участков, помещений, и т. д., технологического и инженерного оборудования, а также за эксплуатацию и содержание имеющихся технических средств противопожарной защиты;
  • установление на каждом предприятии (учреждении, организации) определенного противопожарного режима;
  • разработка и утверждение общей объектовой инструкции о мерах пожарной безопасности и соответствующих инструкций для всех взрывоопасных и пожароопасных помещений, организация ознакомления, изучения этих инструкций работниками;
  • разработка схем (планов) эвакуации личного состава (людей) и ценного имущества (музеи, библиотеки) на случай возникновения пожара;
  • установление порядка (системы) оповещения людей о пожаре, ознакомление с ним всех работников учреждения;
  • определение категорий зданий и помещений за взрывоопасностью и пожарной опасностью в соответствии с требованиями действующих нормативных документов, установления классов зон, за Правилами электроустановок (ПУЭ);
  • обеспечение территорий, зданий и помещений, табличками с указанием номера телефона и порядка вызова пожарной охраны, соответствующими знаками пожарной безопасности ;
  • создание и организация работы пожарно-технических комиссий и для больших предприятий добровольных пожарных команд.
Ссылка на основную публикацию
Adblock
detector