0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ОКБ и ТКБ мембранный и титрационный методы

ОКБ и ТКБ мембранный и титрационный методы

Запах природной воды вызывают летучие пахнущие вещества, попадающие в воду естественным путем или со сточными водами. В родниках, содержащих только неорганические вещества, может быть запах сероводорода. Интенсивность запаха оценивается в баллах по пятибальной шкале, определяемой при температуре воды в 20°С. По ГОСТу питьевая вода может иметь запах до 2 баллов.

Основной запах в исследуемых родниках — сероводород. Источник сероводорода в природных водах — восстановительные процессы, протекающие при бактериальном разложении и биохимическом окислении органических веществ естественного происхождения и веществ, поступающих в водные объекты со сточными водами. Сероводород находится в водах родников в виде недессоциированных молекул Н2S и ионов гидросульфата НS. Наличие в воде сероводорода служит показателем ее сильного загрязнения и анаэробных условий. Является причиной невозможности её потребление, так как сероводород обладает высокой токсичностью, дурным запахом, который резко ухудшает органолептические свойства воды, делая её непригодной для питьевого водоснабжение, технических и хозяйственных целей.

Цветность обусловлена содержанием в воде окрашенных органических соединений, присутствием гуминовых соединений, содержанием трехвалентного железа, вымыванием из почвогрунтов различных веществ, поступлением загрязненных сточных вод. Гуминовые вещества – итог процесса разложения остатков растений – окрашивают воду, в зависимости от концентрации, в желтый или коричневый цвет. Степень цветности выражается в градусах платино–кобальтовой шкалы. Высокая или повышенная цветность отрицательно влияет на развитие живых организмов, ухудшает условия окисления растворенного в воде железа.

Норма цветности по СанПиН составляет 30 градусов.

Мутность по нормам СанПиН не должна превышать 1,5 мг/л. Мутность воды в родниках чаще всего зависит от наличия взвешенных частиц ила, тонкодисперсной глины, высокого содержания общего железа и ряда других веществ, нередко связана с не обустроенностью или плохой обустроенностью места выхода родников и емкостей накопления воды, низким дебитом родников.

Водородный показатель (рН) – величина, характеризующая активность концентрации ионов водорода в растворах и численно равная отрицательному десятичному логарифму этой активности или концентрации, выраженной в моль/дм3:

Если в воде при 22°С содержится 10-7,2 моль/дм3 ионов водорода (Н+), то она будет обладать нейтральной реакцией; при меньшем содержании Н+ реакция будет щелочной, при большей – кислотной. Таким образом, при рН =7,2 реакция воды нейтральна, при рН 7,2 – щелочная.

Водородный показатель играет важную роль в определении качества воды. В речных и родниковых водах его значение колеблется от 6 до 8,5. Концентрация подвержена сезонным колебаниям – зимой она обычно равна 6,8 – 7,4, летом – 7,4 — 8,2.

Концентрация ионов водорода имеет большое значение для химических и биологических процессов, протекающих в природных водах. От него зависит развитие и жизнедеятельность водных растений, устойчивость различных форм миграции элементов, степень агрессивности воды по отношению к металлам, бетону и др.

Для человека слабокислые воды (рН – 6,7 – 6,8) кажутся более вкусными, чем щелочные, поэтому зимние холодные воды «вкуснее» теплых летних вод.

Жесткость – свойство природной воды, определяемое присутствием в ней растворенных солей щелочно-земельных металлов – кальция, магния и некоторых других. Основными характеристиками, определяющими жесткость воды, является наличие в воде ионов кальция и магния. Верхний предел жесткости питьевой воды в системах водоснабжения по действующим санитарным нормам не должен превышать 7-10 мг*экв/л. Один миллиэквивалент жесткости отвечает содержанию 20,04 мг/л Ca2+ или 12,16 мг/л Mg2+. При длительном кипячении воды из нее выделяется диоксид углерода и выпадает осадок, состоящий из карбоната кальция, при этом жесткость воды уменьшается. Поэтому применяют термин «временная или устранимая жесткость воды», понимая при этом присутствие в воде гидрокарбонатных солей, которые могут быть удалены из воды кипячением в течение одного часа. Оставшаяся после кипячения жесткость воды называется постоянной.

Жесткость природной воды колеблется в широких пределах. В одном и том же водном объекте значения ее изменяются в зависимости от времени.

Классифицируются природные воды по общей жесткости следующим образом:

Очень мягкая – до 1,5 ммоль/дм3

мягкая – 1,5 – 3,0 ммоль/дм3

умеренно жесткая -3,0 – 6,0 ммоль/дм3

жесткая – 6,0 – 9,0 ммоль/дм3

очень жесткая > 9,0 ммоль/дм3.

По действующему стандарту жесткость питьевой воды не должна превышать 7 ммоль/дм3. Для питья допускается использование относительно жестких вод, так как наличие солей кальция и магния невредно для здоровья и не ухудшает вкусовых качеств воды.

Последние исследования установили, что жесткая вода, в которой много солей кальция и магния, создает дополнительную нагрузку на почки и может стать причиной образования в них камней. Наиболее благоприятна для организма человека вода с жесткостью 3 – 4,5 ммоль/дм3. Вода с низкой жесткостью вымывает из организма соли и тогда возникает угроза остеопороза. С другой стороны, имеются исследования, выявляющие снижение риска сердечно-сосудистых заболеваний при постоянном потреблении воды с высокой жесткостью.

Сухой остаток – это сумма всех примесей воды, определяемая путем выпаривания пробы. Сухой остаток характеризует общую минерализацию воды. Пригодные для водоснабжения воды не должны иметь минерализацию выше 1000 мг/дм3. По степени минерализации воды принято подразделять на четыре группы: ультрапресные с содержанием солей до 200 мг/дм3, пресные – от 200 до 500, повышенной минерализации – от 500 до 1000 и высокой минерализации – выше 1000 мг/дм3.

С увеличением общего содержания солей повышается электропроводность воды и это приводит к ускорению коррозионных процессов. Повышенная концентрация солей может привести к уменьшению растительности и кислорода.

Нитриты (NO2-) в природных водах встречаются в связи с разложением органических веществ и их нитрификацией. Нитриты – неустойчивые компоненты природных вод. Наибольшая их концентрация (до 10 – 20 мг/дм3 азота) наблюдается во время летней стагнации. При достаточной концентрации кислорода процесс окисления идет дальше под действием бактерий, и нитриты окисляются до нитратов.

Повышенное содержание нитритов указывает на наличие процессов разложения органических веществ в условиях медленного окисления NO2- в NO3- , что указывает на загрязнение водного объекта органическими веществами, т.е. является важным санитарным показателем.

ПДК нитритов в питьевой воде 3,0 мг/дм3.

Нитраты (NO3-) – соединения азотной кислоты. Присутствие нитратных ионов в природных водах связано с внутриводоемными процессами нитрификации аммонийных ионов в присутствии кислорода под действием нитрифицирующих бактерий.. Содержание нитратов увеличивается к осени и достигает максимума зимой. Повышенное содержание нитратов указывает на ухудшение санитарного состояния водного объекта. При этом нитраты являются наименее токсичной формой из всех соединений азота (нитритов, аммония) и могут нанести вред здоровью только при очень высоких концентрациях.

ПДК нитратов в питьевой воде 45 мг/дм3.

Хлориды — хлоридные ионы относятся к главным ионам химического состава природных вод. Концентрация хлоридов в родниках колеблется от долей миллиграмма до сотен и тысяч в 1 дм3.

Первичным источником хлоридов в природных водах являются магматические породы, в состав которых входят хлорсодержащие минералы (содалит, хлорапатит и др.). Значительное количество хлоридов поступают в природные воды из океана через атмосферу. Хлориды обладают большой миграционной способностью, слабовыраженной способностью к сорбции на взвешенных веществах и к потреблению водными организмами.

Повышенное содержание хлоридов ухудшает вкусовые качества воды и делает её малопригодной для питьевого водоснабжения. Концентрация хлоридов в поверхностных водах подвержена заметным сезонным колебаниям, коррелирующим с изменениями минерализации воды. ПДК хлоридов составляет 350 мг/дм3.

Сульфаты — естественное содержание сульфатов в грунтовых водах обусловлено выветриванием пород и биохимическими процессами, происходящими в водоносных слоях. Часть их поступает в процессе отмирания организмов и окисления веществ растительного и животного происхождения. Повышенное содержание сульфатов ухудшает органолептические свойства воды и оказывает неблагоприятные физиологические воздействия на организм человека.

В аэробных условиях сульфаты не изменяются, а в анаэробных сульфаты восстанавливаются облигатными сульфатредуцирующими бактериями до сульфидов, которые выпадают затем в осадок преимущественно в виде сульфида железа. Этот процесс наблюдается в емкостях накопления родниковых вод и колодцев, если они мало используются, и в них застаивается вода.

ПДК в питьевых водах до 500 мг/дм3.

Соединения железа почти всегда присутствуют в природных водах. Формы присутствия железа в воде многообразны. В двухвалентном состоянии железо может присутствовать в воде лишь при низких значениях рН и Еh. Следует отметить, что усваиваться организмом может только двухвалентное железо, а не наиболее его распространенная его трехвалентная форма.

Соединения железа присутствуют в воде в растворенной, коллоидной и нерастворенной форме.

Повышенное содержание в питьевой воде более 1 мг/дм3 железа ухудшает качество воды и возможность ее использования для пищевых целей. Слишком высокое содержание железа в пищевом рационе может вызывать многочисленные неблагоприятные последствия для организма.

Анализ воды обычно проводится по следующим параметрам:

ОКБ и ТКБ: мембранный и титрационный методы

Метод основан на накоплении бактерий после посева определённых объёмов воды в жидкие питательные среды, с последующим пересевом на дифференциальную плотную среду с лактозой и идентификации колоний по культуральным и биохимическим тестам. При исследовании питьевой воды качественым методом засевают три объёма по 100 см3. При исследовании воды с цельк| количественного определения ОКБ и ТКБ (повторный анализ) засевают соответственно 1,10 и 100 см3 — по три объёма каждой серии.

Посевы 10 и 100 см3 воды проводят соответственно в 1 и 10 см3 среды накопления — концентрированной ЛПС без индикатора. Посев 1 см3 пробы проводят в 10 см3 ЛПС обычной концентрации. Посевы инкубируют при температуре 37 °С в течение 48 ч. Через 24 ч проводят предварительную оценку посевов в среде накопления. Из ёмкостей, где отмечено наличие роста (помутнение) и образование газа, материал высевают бактериологической петлёй на сектора среды Эндо для получения изолированных колоний. Ёмкости без видимых признаков роста и образования газа оставляют в термостате до 48 ч и ещё раз просматривают для окончательной оценки.

Результаты посевов без признаков роста считают отрицательными, и дальнейшему изучению они не подлежат. Из ёмкостей, где отмечено помутнение и делают высев на сектора среды Эндо. Посевы на среде Эндо инкубируют при температуре 37 °С 18—20 ч. При появлении помутнения, образовании газа в среде накопления и росте на среде Эндо колоний, типичных для лактозоположительных бактерий: тёмно-красных или красных, с металлическим блеском или без него, выпуклых с красным центром и отпечатком на питательной среде, дают положительное заключение о присутствии ОКБ в данном объёме пробы.

Наличие ОКБ необходимо подтвердить в следующих случаях:

ü в среде накопления отмечено только помутнение;

ü принадлежность к лактозоположительным колониям вызывает сомнение.

Для подтверждения на присутствие ОКБ выполняют следующие действия:

1. проверяют наличие отпечатка на среде Эндо после снятия петлёй подозрительной колонии;

2. выполняют оксидазный тест;

3. проверяют принадлежность к группе по Граму;

4. подтверждают способность к газообразованию при посеве 1—2 изолированных колоний всех типов с каждого сектора в среду подтверждения (ЛПС с индикатором) с последующей инкубацией посевов при температуре 37 °С в течение 24—48 ч.

При отсутствии изолированных колоний проводят рассев на среду Эндо общепринятыми способами. Отрицательное заключение дают, если:

ü в среде накопления нет признаков роста;

ü на секторах среды Эндо нет роста;

ü на секторах среды Эндо выросли нехарактерные для колиформных бактерий колонии (прозрачные, с неровными краями, расплывчатые);

ü все колонии оказались оксидазоположительными;

ü все колонии оказались грамположительными;

ü в подтверждающем тесте на среде ЛПС с индикатором не отмечено газообразования.

Для определения ТКБ работают с секторами среды Эндо, где выросли типичные лактоза+ колонии. Делают посев двух-трёх изолированных колоний каждого типа из каждого сектора в пробирки с любой из лактозных сред накопления, инкубируют при температуре 44 °С в течение суток. При образовании газа в лактозной среде накопления, росте на среде Эндо лактозоположительных бактерий и выявлении способности к ферментации лактозы до кислоты и газа в подтверждающих лактозных средах при температуре 44 °С в течение 24 ч дают положительное заключение о наличии в этом объёме воды ТКБ. При качественном исследовании (при исследовании трёх объёмов по 100 см3 при обнаружении ОКБ и ТКБ хотя бы в одном из трёх объёмов делают запись: «Обнаружены ОКБ и ТБК в 100 см3».

При исследовании количественным методом определяют НВЧ, ОКБ и ТКБ по специальным таблицам. При отрицательных результатах исследования на наличие ОКБ и ТКБ во всех исследованных объёмах выдают заключение: «Не обнаружены ОКБ и ТКБ в 100 см3».

ОКБ и ТКБ мембранный и титрационный методы

4.2. Методы контроля.
Биологические и микробиологические факторы

САНИТАРНО-МИКРОБИОЛОГИЧЕСКИЙ АНАЛИЗ ПИТЬЕВОЙ ВОДЫ

Дата введения 2001-07-01

1. РАЗРАБОТАНЫ НИИ экологии человека и гигиены окружающей среды им. А.Н.Сысина РАМН (Недачин А.Е., Доскина Т.В., Дмитриева Р.А., Тишкова Н.Ю., Сидоренко С.Г.), Федеральным научным центром гигиены им. Ф.Ф.Эрисмана Минздрава России (Трухина Г.М., Мойсеенко Н.Н., Сарафанюк Е.В.), Аналитическим центром контроля качества воды «Роса» (Кашкарова Г.П.), Федеральным центром госсанэпиднадзора Минздрава России (Кривопалова Н.С., Сорокина Р.С.), Центром госсанэпиднадзора в г.Москве (Салова Н.Я., Малышева З.Г., Кожевникова Н.А.), Центром госсанэпиднадзора в Московской области (Козлова А.Т.), Московским НИИ генетики (Бовыкина Н.М.), НИИ коммунального водоснабжения и очистки воды (Русанова Н.А.), Российской медицинской академией последипломного образования (Власова И.В.), Российским государственным медицинским университетом (Пивоваров Ю.П.).

2. УТВЕРЖДЕНЫ Главным государственным санитарным врачом Российской Федерации — Первым заместителем министра здравоохранения Российской Федерации 9 февраля 2001 г.

3. С момента ввода данных методических указаний считаются утратившими силу методические указания МУК 4.2.671-97 «Методы санитарно-микробиологического анализа питьевой воды» и Информационно-методическое письмо Департамента государственного санитарно-эпидемиологического надзора Министерства здравоохранения Российской Федерации N 1100/1670-98-111 «О дополнительных мерах по осуществлению контроля качества питьевой воды по микробиологическим и паразитологическим показателям».

4. ВВЕДЕНЫ ВПЕРВЫЕ.

ВНЕСЕНО Изменение N 1, утвержденное и введенное в действие Главным государственным санитарным врачом Российской Федерации 23 декабря 2010 года

Изменение N 1 внесено изготовителем базы данных по тексту М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2011 год

1. Область применения

1. Область применения

1.1. Настоящие методические указания устанавливают методы санитарно-микробиологического контроля качества питьевой воды в отношении ее эпидемической безопасности по показателям СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

1.2. Методические указания предназначены для лабораторий организаций, предприятий и иных хозяйственных субъектов, осуществляющих производственный контроль, а также органов санитарно-эпидемиологической службы, обеспечивающих государственный и ведомственный санитарно-эпидемиологический надзор за качеством питьевой воды централизованных систем питьевого водоснабжения.

2. Нормативные ссылки

3. Отбор, хранение и транспортирование проб

3.1. Общие требования к отбору проб

3.1.1. Отбор проб производит специалист после прохождения инструктажа по технике выполнения отбора проб для микробиологического анализа.

3.1.2. Для отбора проб воды используют специально предназначенную для этих целей одноразовую посуду или емкости многократного применения, изготовленные из материалов, не влияющих на жизнедеятельность микроорганизмов.

3.1.3. Емкости должны быть оснащены плотно закрывающимися пробками (силиконовыми, резиновыми или из других материалов) и защитным колпачком (из алюминиевой фольги, плотной бумаги). Многоразовая посуда, в т.ч. пробки, должна выдерживать стерилизацию сухим жаром или автоклавированием.

3.1.4. При отборе проб в одной и той же точке для различных целей первыми отбирают пробы для бактериологических исследований. Если отбирают воду после обеззараживания химическими реагентами, то для нейтрализации остаточного количества дезинфектанта в емкость, предназначенную для отбора проб, вносят до стерилизации натрий серноватисто-кислый в виде кристаллов из расчета 10 мг на 500 мл воды.

3.1.5. Пробу отбирают в стерильные емкости. Емкость открывают непосредственно перед отбором, удаляя пробку вместе со стерильным колпачком. Во время отбора пробка и края емкости не должны чего-либо касаться. Ополаскивать посуду запрещается.

3.1.6. При исследовании воды из распределительных сетей отбор проб из крана производят после предварительной его стерилизации обжиганием и последующего спуска воды не менее 10 мин при полностью открытом кране. При отборе пробы напор воды может быть уменьшен. Пробу отбирают непосредственно из крана без резиновых шлангов, водораспределительных сеток и других насадок. Если через пробоотборный кран происходит постоянный излив воды, отбор проб производят без предварительного обжига, не изменяя напора воды и существующей конструкции (при наличии силиконовых или резиновых шлангов).

При заполнении емкостей должно оставаться пространство между пробкой и поверхностью воды, чтобы пробка не смачивалась при транспортировании.

После наполнения емкость закрывают стерильной пробкой и колпачком.

3.1.7. Отобранную пробу маркируют и сопровождают документом отбора проб воды с указанием места, даты, времени забора, фамилии специалиста, отбиравшего пробу, и другой информации.

3.2. Хранение и транспортирование проб

3.2.1. Доставку проб питьевой воды осуществляют в контейнерах-холодильниках при температуре (4-10) °С. В холодный период года контейнеры должны быть снабжены термоизолирующими прокладками, обеспечивающими предохранение проб от промерзания. При соблюдении указанных условий срок начала исследований от момента отбора проб не должен превышать 6 ч.

Если пробы нельзя охладить, их анализ следует провести в течение 2 ч после забора.

Если не может быть соблюдено время доставки пробы и температура хранения, анализ пробы проводить не следует.

Пробы питьевой воды должны доставляться в отдельных продезинфицированных контейнерах.

Принципы нормирования питьевой воды. ОКБ и ТКБ: мембранный и титрационный методы

Комментарии к таблице. Оценивая количество ОКБ и ТКБ в 100 см 3 воды, следует анализировать не менее трех объемов воды (по 100 см 3 каждый). При оценке ОКБ и ОМЧ превышение норматива не допускается в 95% проб, отбираемых в течение года. Колифаги определяют только в системах водоснабжения из поверхностных источников перед подачей воды в распределительную сеть, то же касается и наличия цист лямблий. Содержание спор сульфитредуцирующих клостридий определяют только при оценке эффективности технологии обработки воды. В случае обнаружения ТКБ, ОКБ, колифагов или хотя бы одного из указанных показателей вновь проводят повторное экстренное исследование воды на ТКБ, ОКБ и колифаги. Параллельно проводят исследование воды на хлориды, аммонийный азот, нитраты и нитриты. Если и в повторно взятой пробе выявляются ОКБ более двух в 100 см 3 и/или ТКБ, и/или колифаги, то проводят исследование на патогенные бактерии кишечной группы и/или энтеровирусы. Такое же исследование на патогенные энтеробактерии и энтеровирусы проводят по эпидемиологическим показаниям по решению территориальных центров Роспотребнадзора.

Термотолерантные колиформные бактерии (ТКБ) входят в состав ОКБ и обладают всеми их признаками, но, в отличие от них, способны ферментировать лактозу до кислоты, альдегида и газа при температуре +44 °С в течение 24 ч. Таким образом, ТКБ отличаются от ОКБ способностью ферментировать лактозу до кислоты и газа при более высокой температуре.

Определяемые показатели, количество и периодичность исследований зависят от типа источника водоснабжения, численности населения, обеспечиваемого водой из данной системы водоснабжения. Эти данные приведены в СанПиН 2.1.4.1074–01 . В методических указаниях по санитарно-микробиологическому анализу питьевой воды (МУК 4.2.1018–01 Министерства здравоохранения РФ ) регламентированы методы санитарно — микробиологического контроля качества питьевой воды.

Общее число микроорганизмов — это общее число видимых при двукратном увеличении мезофильных (имеющих температурный оптимум +37 °С) аэробных и факультативно анаэробных микроорганизмов (МАФАнМ), которые способны образовывать колонии на питательном агаре при температуре +37 °С в течение 24 ч. Для выявления этого показателя в стерильную чашку Петри вносят 1 мл воды и заливают расплавленным (температура не выше +50 °С) мясопептонным агаром, а через сутки подсчитывают количество выросших колоний.

ОПРЕДЕЛЕНИЕ ОКБ И ТКБ МЕТОДОМ МЕМБРАННЫХ ФИЛЬТРОВ

Метод основан на фильтровании определенных объемов воды через мембранные фильтры. Для этих целей используют фильтры с диаметром пор 0,45 мкм и размером 35 или 47 мм в диаметре (отечественные фильтры «Владипор» МФАС–С–1, МФАС–С–2, МФАС–МА (№ 4–6) или зарубежные — ISO 9000 или EN 29000). Мембранные фильтры подготавливают к анализу в соответствии с инструкциями завода — изготовителя.

ОПРЕДЕЛЕНИЕ ОКБ И ТКБ ТИТРАЦИОННЫМ МЕТОДОМ

Метод основан на накоплении бактерий после посева определенных объемов воды в жидкие питательные среды, с последующим пересевом на дифференциальную плотную среду с лактозой и идентификации колоний по культуральным и биохимическим тестам. При исследовании питьевой воды качественным методом (текущий санэпиднадзор) засевают три объема по 100 см 3 . При исследовании воды с целью количественного определения ОКБ и ТКБ (повторный анализ) засевают соответственно 100, 10 и 1 см 3 — по три объема каждой серии.

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОЧВЫ

Почва дает приют разнообразным микроорганизмам. Так, количество только бактерий в почве достигает 10 млрд. клеток в 1 г. Микроорганизмы участвуют в почвообразовании и самоочищении почвы, в кругооборота в природе азота, углерода, и других элементов. В ней кроме бактерий обитают грибы, простейшие и лишайники представляющие собой симбиоз грибов с цианобактериями. На поверхности почвы микроорганизмов относительно мало из-за губительного действия УФ-лучей, высушивания и других факторов. Пахотный слой почвы толщиной 10–15 см содержит наибольшее число микроорганизмов. По мере углубления количество микроорганизмов уменьшается вплоть до их исчезновения на глубине 3–4 м. Состав микрофлоры почвы зависит от ее типа и состояния, состава растительности, температуры, влажности и т.д. Большинство почвенных микроорганизмов способны развиваться при нейтральном рН, высокой относительной влажности, температуре от 25 до 45 °С.

В почве живут спорообразующие палочки родов Bacillus иCloslridium. Непатогенные бациллы(Вас. megaterium, Вас. subtilis и др.). наряду с псевдомонадами, протеем и некоторыми другими бактериями являются аммонифицирующими, составляя группу гнилостных бактерий, осуществляющих минерализацию органических веществ. Патогенные спорообразующие палочки (возбудители сибирской язвы, ботулизма, столбняка, газовой гангрены) способны длительно сохраняться, а некоторые даже размножаться в почве (Clostridium botulinum ). Почва является также местом обитания азотфиксирующих бактерий, усваивающих молекулярный азот(Azotobacter, Azomonas, Mycobacterium и др.). Азотфиксирующие разновидности цианобактерий, или сине-зеленых водорослей, применяют для повышения плодородия рисовых полей.

Представители семейства кишечных бактерий (сем. Enterobacteriaceae) — кишечная палочка, возбудители брюшного тифа, сальмонеллезов и дизентерии, попав в почву с фекалиями, отмирают. В чистых почвах кишечная палочка и протей встречаются редко; Обнаружение бактерий группы кишечной палочки (колиформных бактерий) в значительных количествах является показателем загрязнения почвы фекалиями человека и животных и свидетельствует об ее санитарно-эпидемиологическом неблагополучии из-за возможности передачи возбудителей кишечных инфекций. Количество простейших в почве колеблется от 500 до 500 000 на 1 г почвы. Питаясь бактериями и органическими остатками, простейшие вызывают изменения в составе органических веществ почвы. В почве находятся также многочисленные грибы, токсины которых, накапливаясь в продуктах питания человека, вызывают интоксикации — микотоксикозы и афлатоксикозы.

Результаты исследования почв учитывают при определении и прогнозе степени их опасности для здоровья и условий проживания населения в населенных пунктах (по эпидемиологическим показаниям), профилактике инфекционной и неинфекционной заболеваемости (предупредительный санитарный надзор), текущем санитарном контроле за объектами, прямо или косвенно воздействующими на окружающую среду.

При проведении текущего санитарного надзора за состоянием почвы ограничиваются кратким санитарно-микробиологическим анализом, указывающим на наличие и степень фекального загрязнения. Показатели, включенные в эту группу, также характеризуют процессы самоочищения почвы от загрязнителей органической природы и энтеробактерий. Полный санитарно-микробиологический анализ почвы проводят в форме предупредительного санитарного надзора. Воздействие химических поллютантов на биогеоценоз предполагает исследование их бактерицидного действия на почвенную микробиоту, как следствие: изменение сообщества почвенных микроорганизмов, ферментативной активности почвы. По эпидемическим показаниям проводят индикацию патогенной микробиоты.

В лаборатории из 5 точечных проб почвы, взятых с одного участка, готовят усредненную пробу, тщательно перемешивая и растирая в стерильной фарфоровой чашке резиновым пестиком в течение 5 мин. Посторонние примеси (корни растений, камни, щепки) удаляют путем просеивания почвы через сито, которое предварительно протирают ватным тампоном, смоченным 96% этиловым спиртом. Из усредненной пробы отбирают навески (от 1 до 50–55 г в зависимости от перечня определяемых показателей) и готовят суспензию 1:10 на стерильной водопроводной воде (10 г почвы на 90 см 3 воды). Для десорбции микроорганизмов с поверхности почвенных частиц приготовленную почвенную суспензию встряхивают в течение 3 мин на мешалке механического диспергатора. После отстаивания суспензии в течение 30 с, готовят последовательные 10-кратные разведения почвы до концентрации 10 -4 –10 -5 г/см 3 .

Оценку результатов санитарно-микробиологического исследования почв проводят путем сопоставления данных, полученных на опытных и контрольных участках почв одинакового состава, расположенных в непосредственной территориальной близости. Схемы оценки санитарного состояния почвы на основании отдельных санитарно-микробиологических критериев представлены в МУ № 14446–76 (табл. 2).

Таблица 2. Схема оценки санитарного состояния почвы по микробиологическим показателям (по МУ№ 1446-76)

Глаза. Лизы. Ресницы. Проблемы. Диагностика. Аптечка

Микробиологические показатели окб и ткб в воде. Микробиологические исследования воды

За период с 9 января по 10 октября 2014г. в отдел ветеринарно-санитарной экспертизы ФГБУ «Тульская МВЛ» поступило – 302 пробы воды, проведено — 693 исследования, из них, на показатели ОКБ, ТКБ-458 исследований.

Что это за показатели, и почему именно им уделяется внимание при оценке питьевой воды?

Вода — основная составная часть любого организма, играет огромную роль в его жизнедеятельности. Она является средой обитания различных микроорганизмов, в числе которых есть и патогенные. Обнаружение патогенов — наиболее точный показатель загрязнения воды. К таким микроорганизмам относятся бактерии группы кишечной палочки – БГКП (бактерии группы кишечной палочки), также называются колиморфными и колиформными бактериями) — условно выделяемая по морфологическим и культуральным признакам группа бактерий семейства энтеробактерий, используемая санитарной микробиологией в качестве маркера фекальной контаминации. Среди колиформных бактерий часто определяется наличие в питьевой воде общих и термотолерантных колиформных бактерий (ОКБ, ТКБ), что свидетельствует о некачественном водоснабжении и возможном фекальном загрязнении водоисточника, что создает потенциальную угрозу развития и распространения кишечных заболеваний.

В системах водоснабжения с подготовленной водой колиформные бактерии обнаруживаться не должны (СанПиН). Присутствие колиформных организмов говорит о недостаточной очистке воды, о ее вторичном загрязнении, о наличии в воде питательных веществ. Допускается случайное попадание колиформных организмов в систему, но не более 5% проб, отобранных в течение года. При выявлении в пробе питьевой воды ТКБ, ОКБ) немедленно осуществляют их определение в повторных пробах.

ТКБ (Термотолерантные колиформные бактерии). Это группа колиформных организмов, способных ферментировать лактозу при 44-45°С. Они быстро обнаруживаются, поэтому служат для оценки эффективности очистки воды от фекальных бактерий.

ОКБ (Общие Колиформные Бактерии) – Группа ОКБ включает достаточно большое число родов семейства Enterobacteriacea, представители которых способны сбраживать лактозу: Citrobacter, Enterobacter, Klebsiella, Serratia, Pantoea, Rahnella и др. Среди этих микроорганизмов также присутствует большое число свободноживущих сапрофитов, поэтому показатель ОКБ является важным технологическим (индикаторным) показателем.

Соответственно, если данные бактерии находятся в питьевой воде, то это значит, что есть вероятность загрязнения воды сточными водами.

Результаты определения показателей ОКБ, ТКБ представляются в виде КОЕ/100 мл; колиформные бактерии не должны обнаруживаться в 100 мл питьевой воды при трехкратном исследовании нормируемого объема.

Как бы то ни было, любое повышенное содержание бактерий в воде — это тревожный признак, и при его появлении нужно что-то делать с водой.

Для проведения микробиологических исследований питьевой воды можно обратиться в ФГБУ «Тульская МВЛ».

ОКБ — это международная квалификация, и они входят в большую группу БГКП (бактерии группы кишечных палочек). Содержание в воде ОКБ можно определять двумя методами: методом мембранных фильтров и титрационным (бродильным) методом.

Исследование воды методом мембранных фильтров. Метод основан на фильтрации установленного объема воды через мембранные фильтры, выращивании посевов на дифференциально-диагностической среде и последующей идентификации колоний по культуральным и биохимическим признакам.

Титрационный метод исследования воды. Метод основан на накоплении бактерий после посева установленного объема воды в жидкую питательную среду, с последующим пересевом на дифференциально-диагностическую среду и идентификации колоний по культуральным и биохимическим тестам.
«Колиформные организмы» принадлежат к классу граммоотрицательных бактерий, в форме палочек, которые живут и размножаются в нижнем отделе пищеварительного тракта человека и множества животных имеющих теплую кровь таких как — домашний скот и водоплавающие птицы, способных ферментировать лактозу при 35-37 0С с образованием кислоты, газа и альдегида. Попадая в воду с фекальными стоками они способны выживать в течении нескольких недель, хотя в подавляющем своем большинстве они лишены способности размножаться.

По данным исследований последних лет наряду с обыкновенно относимыми к этому классу бактериями Escherichia (E.Coli), Citrobacter, Enterobacter и Klebsiela к нему относится и способные ферментировать лактозу бактерии Enterobacter cloasae и Citrobadter freundii. Эти бактерии возможно обнаружить не только в фекалиях, но также в окружающей среде, и даже в питьевой воде с относительно большой концентрацией питательных веществ. Помимо этого сюда можно отнести виды, которые редко или совсем не обнаруживаются в фекалиях и способные размножаться в воде достаточно хорошего качества.

ТКБ — термотолерантные колиформные бактерии. Число ТКБ характеризует степень фекального загрязнения воды водных объектов и косвенно определяет эпидемическую опасность в отношении возбудителей кишечных инфекций. ТКБ определяют теми же методами, как и БГКП (ОКБ).
Отбор проб для санитарно-микробиологических исследований должен проводиться с соблюдением правил стерильности и всех не-обходимых условий, регламентированных для каждого исследуемого объекта соответствующими нормативными документами.

Ошибки, допущенные при взятии проб, приводят к получению неправильных результатов. При упаковке и транспортировке проб необходимо создавать условия, исключающие гибель или размножение исходной микробиоты в исследуе-мом объекте. Поэтому отобранные пробы должны быть как можно быстрее доставлены в лабораторию для исследования.

Запах природной воды вызывают летучие пахнущие вещества, попадающие в воду естественным путем или со сточными водами. В родниках, содержащих только неорганические вещества, может быть запах сероводорода. Интенсивность запаха оценивается в баллах по пятибальной шкале, определяемой при температуре воды в 20°С. По ГОСТу питьевая вода может иметь запах до 2 баллов.

Основной запах в исследуемых родниках — сероводород. Источник сероводорода в природных водах — восстановительные процессы, протекающие при бактериальном разложении и биохимическом окислении органических веществ естественного происхождения и веществ, поступающих в водные объекты со сточными водами. Сероводород находится в водах родников в виде недессоциированных молекул Н2S и ионов гидросульфата НS. Наличие в воде сероводорода служит показателем ее сильного загрязнения и анаэробных условий. Является причиной невозможности её потребление, так как сероводород обладает высокой токсичностью, дурным запахом, который резко ухудшает органолептические свойства воды, делая её непригодной для питьевого водоснабжение, технических и хозяйственных целей.

Цветность обусловлена содержанием в воде окрашенных органических соединений, присутствием гуминовых соединений, содержанием трехвалентного железа, вымыванием из почвогрунтов различных веществ, поступлением загрязненных сточных вод. Гуминовые вещества – итог процесса разложения остатков растений – окрашивают воду, в зависимости от концентрации, в желтый или коричневый цвет. Степень цветности выражается в градусах платино–кобальтовой шкалы. Высокая или повышенная цветность отрицательно влияет на развитие живых организмов, ухудшает условия окисления растворенного в воде железа.

Норма цветности по СанПиН составляет 30 градусов.

Мутность по нормам СанПиН не должна превышать 1,5 мг/л. Мутность воды в родниках чаще всего зависит от наличия взвешенных частиц ила, тонкодисперсной глины, высокого содержания общего железа и ряда других веществ, нередко связана с не обустроенностью или плохой обустроенностью места выхода родников и емкостей накопления воды, низким дебитом родников.

Водородный показатель (рН) – величина, характеризующая активность концентрации ионов водорода в растворах и численно равная отрицательному десятичному логарифму этой активности или концентрации, выраженной в моль/дм3:

Если в воде при 22°С содержится 10-7,2 моль/дм3 ионов водорода (Н+), то она будет обладать нейтральной реакцией; при меньшем содержании Н+ реакция будет щелочной, при большей – кислотной. Таким образом, при рН =7,2 реакция воды нейтральна, при рН 7,2 – щелочная.

Водородный показатель играет важную роль в определении качества воды. В речных и родниковых водах его значение колеблется от 6 до 8,5. Концентрация подвержена сезонным колебаниям – зимой она обычно равна 6,8 – 7,4, летом – 7,4 — 8,2.

Концентрация ионов водорода имеет большое значение для химических и биологических процессов, протекающих в природных водах. От него зависит развитие и жизнедеятельность водных растений, устойчивость различных форм миграции элементов, степень агрессивности воды по отношению к металлам, бетону и др.

Для человека слабокислые воды (рН – 6,7 – 6,8) кажутся более вкусными, чем щелочные, поэтому зимние холодные воды «вкуснее» теплых летних вод.

Жесткость – свойство природной воды, определяемое присутствием в ней растворенных солей щелочно-земельных металлов – кальция, магния и некоторых других. Основными характеристиками, определяющими жесткость воды, является наличие в воде ионов кальция и магния. Верхний предел жесткости питьевой воды в системах водоснабжения по действующим санитарным нормам не должен превышать 7-10 мг*экв/л. Один миллиэквивалент жесткости отвечает содержанию 20,04 мг/л Ca2+ или 12,16 мг/л Mg2+. При длительном кипячении воды из нее выделяется диоксид углерода и выпадает осадок, состоящий из карбоната кальция, при этом жесткость воды уменьшается. Поэтому применяют термин «временная или устранимая жесткость воды», понимая при этом присутствие в воде гидрокарбонатных солей, которые могут быть удалены из воды кипячением в течение одного часа. Оставшаяся после кипячения жесткость воды называется постоянной.

Жесткость природной воды колеблется в широких пределах. В одном и том же водном объекте значения ее изменяются в зависимости от времени.

Классифицируются природные воды по общей жесткости следующим образом:

Очень мягкая – до 1,5 ммоль/дм3

Мягкая – 1,5 – 3,0 ммоль/дм3

Умеренно жесткая -3,0 – 6,0 ммоль/дм3

Жесткая – 6,0 – 9,0 ммоль/дм3

Очень жесткая > 9,0 ммоль/дм3.

По действующему стандарту жесткость питьевой воды не должна превышать 7 ммоль/дм3. Для питья допускается использование относительно жестких вод, так как наличие солей кальция и магния невредно для здоровья и не ухудшает вкусовых качеств воды.

Последние исследования установили, что жесткая вода, в которой много солей кальция и магния, создает дополнительную нагрузку на почки и может стать причиной образования в них камней. Наиболее благоприятна для организма человека вода с жесткостью 3 – 4,5 ммоль/дм3. Вода с низкой жесткостью вымывает из организма соли и тогда возникает угроза остеопороза. С другой стороны, имеются исследования, выявляющие снижение риска сердечно-сосудистых заболеваний при постоянном потреблении воды с высокой жесткостью.

Сухой остаток – это сумма всех примесей воды, определяемая путем выпаривания пробы. Сухой остаток характеризует общую минерализацию воды. Пригодные для водоснабжения воды не должны иметь минерализацию выше 1000 мг/дм3. По степени минерализации воды принято подразделять на четыре группы: ультрапресные с содержанием солей до 200 мг/дм3, пресные – от 200 до 500, повышенной минерализации – от 500 до 1000 и высокой минерализации – выше 1000 мг/дм3.

С увеличением общего содержания солей повышается электропроводность воды и это приводит к ускорению коррозионных процессов. Повышенная концентрация солей может привести к уменьшению растительности и кислорода.

Нитриты (NO2-) в природных водах встречаются в связи с разложением органических веществ и их нитрификацией. Нитриты – неустойчивые компоненты природных вод. Наибольшая их концентрация (до 10 – 20 мг/дм3 азота) наблюдается во время летней стагнации. При достаточной концентрации кислорода процесс окисления идет дальше под действием бактерий, и нитриты окисляются до нитратов.

Повышенное содержание нитритов указывает на наличие процессов разложения органических веществ в условиях медленного окисления NO2- в NO3- , что указывает на загрязнение водного объекта органическими веществами, т.е. является важным санитарным показателем.

ПДК нитритов в питьевой воде 3,0 мг/дм3.

Нитраты (NO3-) – соединения азотной кислоты. Присутствие нитратных ионов в природных водах связано с внутриводоемными процессами нитрификации аммонийных ионов в присутствии кислорода под действием нитрифицирующих бактерий.. Содержание нитратов увеличивается к осени и достигает максимума зимой. Повышенное содержание нитратов указывает на ухудшение санитарного состояния водного объекта. При этом нитраты являются наименее токсичной формой из всех соединений азота (нитритов, аммония) и могут нанести вред здоровью только при очень высоких концентрациях.

ПДК нитратов в питьевой воде 45 мг/дм3.

Хлориды — хлоридные ионы относятся к главным ионам химического состава природных вод. Концентрация хлоридов в родниках колеблется от долей миллиграмма до сотен и тысяч в 1 дм3.

Первичным источником хлоридов в природных водах являются магматические породы, в состав которых входят хлорсодержащие минералы (содалит, хлорапатит и др.). Значительное количество хлоридов поступают в природные воды из океана через атмосферу. Хлориды обладают большой миграционной способностью, слабовыраженной способностью к сорбции на взвешенных веществах и к потреблению водными организмами.

Повышенное содержание хлоридов ухудшает вкусовые качества воды и делает её малопригодной для питьевого водоснабжения. Концентрация хлоридов в поверхностных водах подвержена заметным сезонным колебаниям, коррелирующим с изменениями минерализации воды. ПДК хлоридов составляет 350 мг/дм3.

Сульфаты — естественное содержание сульфатов в грунтовых водах обусловлено выветриванием пород и биохимическими процессами, происходящими в водоносных слоях. Часть их поступает в процессе отмирания организмов и окисления веществ растительного и животного происхождения. Повышенное содержание сульфатов ухудшает органолептические свойства воды и оказывает неблагоприятные физиологические воздействия на организм человека.

В аэробных условиях сульфаты не изменяются, а в анаэробных сульфаты восстанавливаются облигатными сульфатредуцирующими бактериями до сульфидов, которые выпадают затем в осадок преимущественно в виде сульфида железа. Этот процесс наблюдается в емкостях накопления родниковых вод и колодцев, если они мало используются, и в них застаивается вода.

ПДК в питьевых водах до 500 мг/дм3.

Соединения железа почти всегда присутствуют в природных водах. Формы присутствия железа в воде многообразны. В двухвалентном состоянии железо может присутствовать в воде лишь при низких значениях рН и Еh. Следует отметить, что усваиваться организмом может только двухвалентное железо, а не наиболее его распространенная его трехвалентная форма.

Соединения железа присутствуют в воде в растворенной, коллоидной и нерастворенной форме.

Повышенное содержание в питьевой воде более 1 мг/дм3 железа ухудшает качество воды и возможность ее использования для пищевых целей. Слишком высокое содержание железа в пищевом рационе может вызывать многочисленные неблагоприятные последствия для организма.

Анализ воды обычно проводится по следующим параметрам:

Пример подсчета окб и ткб сточных вод. Микробиологические показатели окб и ткб в воде

Комментарии к таблице. Оценивая количество ОКБ и ТКБ в 100 см 3 воды, следует анализировать не менее трех объемов воды (по 100 см 3 каждый). При оценке ОКБ и ОМЧ превышение норматива не допускается в 95% проб, отбираемых в течение года. Колифаги определяют только в системах водоснабжения из поверхностных источников перед подачей воды в распределительную сеть, то же касается и наличия цист лямблий. Содержание спор сульфитредуцирующих клостридий определяют только при оценке эффективности технологии обработки воды. В случае обнаружения ТКБ, ОКБ, колифагов или хотя бы одного из указанных показателей вновь проводят повторное экстренное исследование воды на ТКБ, ОКБ и колифаги. Параллельно проводят исследование воды на хлориды, аммонийный азот, нитраты и нитриты. Если и в повторно взятой пробе выявляются ОКБ более двух в 100 см 3 и/или ТКБ, и/или колифаги, то проводят исследование на патогенные бактерии кишечной группы и/или энтеровирусы. Такое же исследование на патогенные энтеробактерии и энтеровирусы проводят по эпидемиологическим показаниям по решению территориальных центров Роспотребнадзора.

Термотолерантные колиформные бактерии (ТКБ) входят в состав ОКБ и обладают всеми их признаками, но, в отличие от них, способны ферментировать лактозу до кислоты, альдегида и газа при температуре +44 °С в течение 24 ч. Таким образом, ТКБ отличаются от ОКБ способностью ферментировать лактозу до кислоты и газа при более высокой температуре.

Определяемые показатели, количество и периодичность исследований зависят от типа источника водоснабжения, численности населения, обеспечиваемого водой из данной системы водоснабжения. Эти данные приведены в СанПиН 2.1.4.1074–01 . В методических указаниях по санитарно-микробиологическому анализу питьевой воды (МУК 4.2.1018–01 Министерства здравоохранения РФ ) регламентированы методы санитарно — микробиологического контроля качества питьевой воды.

Общее число микроорганизмов — это общее число видимых при двукратном увеличении мезофильных (имеющих температурный оптимум +37 °С) аэробных и факультативно анаэробных микроорганизмов (МАФАнМ), которые способны образовывать колонии на питательном агаре при температуре +37 °С в течение 24 ч. Для выявления этого показателя в стерильную чашку Петри вносят 1 мл воды и заливают расплавленным (температура не выше +50 °С) мясопептонным агаром, а через сутки подсчитывают количество выросших колоний.

ОПРЕДЕЛЕНИЕ ОКБ И ТКБ МЕТОДОМ МЕМБРАННЫХ ФИЛЬТРОВ

Метод основан на фильтровании определенных объемов воды через мембранные фильтры. Для этих целей используют фильтры с диаметром пор 0,45 мкм и размером 35 или 47 мм в диаметре (отечественные фильтры «Владипор» МФАС–С–1, МФАС–С–2, МФАС–МА (№ 4–6) или зарубежные — ISO 9000 или EN 29000). Мембранные фильтры подготавливают к анализу в соответствии с инструкциями завода — изготовителя.

ОПРЕДЕЛЕНИЕ ОКБ И ТКБ ТИТРАЦИОННЫМ МЕТОДОМ

Метод основан на накоплении бактерий после посева определенных объемов воды в жидкие питательные среды, с последующим пересевом на дифференциальную плотную среду с лактозой и идентификации колоний по культуральным и биохимическим тестам. При исследовании питьевой воды качественным методом (текущий санэпиднадзор) засевают три объема по 100 см 3 . При исследовании воды с целью количественного определения ОКБ и ТКБ (повторный анализ) засевают соответственно 100, 10 и 1 см 3 — по три объема каждой серии.

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОЧВЫ

Почва дает приют разнообразным микроорганизмам. Так, количество только бактерий в почве достигает 10 млрд. клеток в 1 г. Микроорганизмы участвуют в почвообразовании и самоочищении почвы, в кругооборота в природе азота, углерода, и других элементов. В ней кроме бактерий обитают грибы, простейшие и лишайники представляющие собой симбиоз грибов с цианобактериями. На поверхности почвы микроорганизмов относительно мало из-за губительного действия УФ-лучей, высушивания и других факторов. Пахотный слой почвы толщиной 10–15 см содержит наибольшее число микроорганизмов. По мере углубления количество микроорганизмов уменьшается вплоть до их исчезновения на глубине 3–4 м. Состав микрофлоры почвы зависит от ее типа и состояния, состава растительности, температуры, влажности и т.д. Большинство почвенных микроорганизмов способны развиваться при нейтральном рН, высокой относительной влажности, температуре от 25 до 45 °С.

В почве живут спорообразующие палочки родов Bacillus иCloslridium. Непатогенные бациллы(Вас. megaterium, Вас. subtilis и др.). наряду с псевдомонадами, протеем и некоторыми другими бактериями являются аммонифицирующими, составляя группу гнилостных бактерий, осуществляющих минерализацию органических веществ. Патогенные спорообразующие палочки (возбудители сибирской язвы, ботулизма, столбняка, газовой гангрены) способны длительно сохраняться, а некоторые даже размножаться в почве (Clostridium botulinum ). Почва является также местом обитания азотфиксирующих бактерий, усваивающих молекулярный азот(Azotobacter, Azomonas, Mycobacterium и др.). Азотфиксирующие разновидности цианобактерий, или сине-зеленых водорослей, применяют для повышения плодородия рисовых полей.

Представители семейства кишечных бактерий (сем. Enterobacteriaceae) — кишечная палочка, возбудители брюшного тифа, сальмонеллезов и дизентерии, попав в почву с фекалиями, отмирают. В чистых почвах кишечная палочка и протей встречаются редко; Обнаружение бактерий группы кишечной палочки (колиформных бактерий) в значительных количествах является показателем загрязнения почвы фекалиями человека и животных и свидетельствует об ее санитарно-эпидемиологическом неблагополучии из-за возможности передачи возбудителей кишечных инфекций. Количество простейших в почве колеблется от 500 до 500 000 на 1 г почвы. Питаясь бактериями и органическими остатками, простейшие вызывают изменения в составе органических веществ почвы. В почве находятся также многочисленные грибы, токсины которых, накапливаясь в продуктах питания человека, вызывают интоксикации — микотоксикозы и афлатоксикозы.

Результаты исследования почв учитывают при определении и прогнозе степени их опасности для здоровья и условий проживания населения в населенных пунктах (по эпидемиологическим показаниям), профилактике инфекционной и неинфекционной заболеваемости (предупредительный санитарный надзор), текущем санитарном контроле за объектами, прямо или косвенно воздействующими на окружающую среду.

При проведении текущего санитарного надзора за состоянием почвы ограничиваются кратким санитарно-микробиологическим анализом, указывающим на наличие и степень фекального загрязнения. Показатели, включенные в эту группу, также характеризуют процессы самоочищения почвы от загрязнителей органической природы и энтеробактерий. Полный санитарно-микробиологический анализ почвы проводят в форме предупредительного санитарного надзора. Воздействие химических поллютантов на биогеоценоз предполагает исследование их бактерицидного действия на почвенную микробиоту, как следствие: изменение сообщества почвенных микроорганизмов, ферментативной активности почвы. По эпидемическим показаниям проводят индикацию патогенной микробиоты.

В лаборатории из 5 точечных проб почвы, взятых с одного участка, готовят усредненную пробу, тщательно перемешивая и растирая в стерильной фарфоровой чашке резиновым пестиком в течение 5 мин. Посторонние примеси (корни растений, камни, щепки) удаляют путем просеивания почвы через сито, которое предварительно протирают ватным тампоном, смоченным 96% этиловым спиртом. Из усредненной пробы отбирают навески (от 1 до 50–55 г в зависимости от перечня определяемых показателей) и готовят суспензию 1:10 на стерильной водопроводной воде (10 г почвы на 90 см 3 воды). Для десорбции микроорганизмов с поверхности почвенных частиц приготовленную почвенную суспензию встряхивают в течение 3 мин на мешалке механического диспергатора. После отстаивания суспензии в течение 30 с, готовят последовательные 10-кратные разведения почвы до концентрации 10 -4 –10 -5 г/см 3 .

Оценку результатов санитарно-микробиологического исследования почв проводят путем сопоставления данных, полученных на опытных и контрольных участках почв одинакового состава, расположенных в непосредственной территориальной близости. Схемы оценки санитарного состояния почвы на основании отдельных санитарно-микробиологических критериев представлены в МУ № 14446–76 (табл. 2).

Таблица 2. Схема оценки санитарного состояния почвы по микробиологическим показателям (по МУ№ 1446-76)

Ссылка на основную публикацию
Adblock
detector