2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Построение аксонометрического изображения детали

Построение аксонометрического изображения детали

§ 13. Построение аксонометрических проекций

Построение аксонометрических проекций начинают с проведения аксонометрических осей.

Положение осей. Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х — горизонтально, ось z — вертикально, ось у — под углом 45° к горизонтальной линии.

Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.

Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).

Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.

При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название «диметрия», что по-гречески означает «двойное измерение».

При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название «изометрия», что по-гречески означает «равные измерения».

На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3 : 5 (3 и 5 клеток).


Рис. 85. Способы построения осей аксонометрических проекций

Построение фронтальной диметрической и изометрической проекций. Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86.


Рис. 86. Комплексный чертеж детали

Порядок построения проекций следующий (рис. 87):

1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты — вдоль оси z, длины — вдоль оси х (рис. 87, а).

2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной ди-метрической проекции — сокращенную в 2 раза; для изометрии — действительную (рис. 87, б).

3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).

4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).

Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений?


Рис. 87. Способ построения аксонометрических проекций

Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.

Построение аксонометрической проекции квадрата показано на рис. 88, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у — половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.


Рис. 88. Аксонометрические проекции квадрата: а — фронтальная диметрическая; б — изометрическая

Построение аксонометрической проекции треугольника показано на рис. 89, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у — его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.


Рис. 89. Аксонометрические проекции треугольника: а — фронтальная диметрическая; б — изометрическая

Построение аксонометрической проекции правильного шестиугольника показано на рис. 90.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.


Рис. 90. Аксонометрические проекции правильного шестиугольника: а — фронтальная диметрическая; б — изометрическая

Ответьте на вопросы

1. Как располагают оси фронтальной диметрической и изометрической проекций? Как их строят?

2. Какие размеры откладывают вдоль осей фронтальной диметрической и изометрической проекций и параллельно им?

3. Вдоль какой аксонометрической оси откладывают размер уходящих вдоль ребер предмета?

4. Назовите общие для фронтальной диметрической и изометрической проекций этапы построения.

Задания к § 13

Упражнение 40

Постройте аксонометрические проекции деталей, приведенных на рис. 91, а, б, в — фронтальные диметрические, для деталей на рис. 91, г, д, е — изометрические.

Размеры определите по числу клеток, считая, что сторона клетки равна 5 мм.

В ответах дано по одному примеру последовательности выполнения заданий.


Рис. 91. За типе на построение аксонометрических проекций

Упражнение 41

Постройте в изометрической проекции правильные четырехугольную, треугольную и шестиугольную призмы. Основания призм расположены горизонтально, длина сторон основания 30 мм, высота 70 мм.

В ответах дан пример последовательности выполнения задания.

Построение аксонометрических изображений деталей

По­ложение предмета в изометрической и диметрическойпроек­циях выбирают в зависимости от его форм и соотношения размеров. Так, детали, имеющие продолговатую (удлиненную) форму, выполняют обычно в диметрии. При этом наиболь­ший размер располагают вдоль осей х или z, по которым раз­меры не уменьшаются. В диметрии также предпочтительно выполнять детали, поверхности которых ограничены горизон­тально-проецирующими или фронтально-проецирующими плос­костями, расположенными под утлом 45° к плоскости π2 и π1 соответственно, так как эти плоскости в изометрической про­екции изображаются в виде вертикальных прямых.

Внутренние формы деталей в аксонометрических проекциях выявляют «вырезом» передней части детали.

Рациональная последовательность построения аксонометри­ческой проекции по имеющемуся эскизу или чертежу (например, рис. 13а) следующая:

1) определяют вид аксонометрической проекции для изоб­ражения данного предмета — изометрия или диметрия. Деталь, показанную на рисунке 13а, целесообразно изображать в диметрической проекции — рисунок 13б, в, г. Выбирают достаточное место для изображения и отмечают начало коор­динат Ор;

2) проводят аксонометрические оси под установленными углами (рис. 6 и 8) из начала координат и строят рис. 13б сечения предмета в плоскостях yOpz и xOpz. Координаты точек сечений, выполняемых в плоскостях yOpz и xOpz, берут соответственно на профильном и фронтальном раз­резах чертежа;

3) строят (рис.13в) изображение верхней части дета­ли, видимых внутренних элементов, наружные боковые по­верхности;

4) достраивают боковые элементы крепления (рис. 13г).

Пример рациональной последовательности построения изометрической проекции детали приведен на рисунке 13а, б, в.

А) б) в)

Рис. 12

Рис. 13

Косоугольная фронтальная диметрическая проекция. Из косоугольных аксонометрических проекций рассмотрим фронтальную диметрическую проекцию, широко используемую в учебном процессе. Положение аксонометрических осей для нееприведено на рисунке 14. Допускается применять фронталь­ные диметрические проекции с углом наклона оси у 30° и 60°. Коэффициент искажения по оси уравен 0,5, по осям х и z— 1. Окружности, лежащие в плоскостях, параллельных фрон­тальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружность. Окружности, лежащие в плоскостях, параллельных горизонтальной и про­фильной плоскостям проекций, — в эллипсы (рис. 15). Большая ось эллипсов 2 и 3 равна 1,07, малая ось — 0,33 диа­метра окружности.

Рис.14 Рис.15

Пример косоугольной фронтальной диметрической проекции детали приведен на рисунке 16.

Рис. 16

Контрольные вопросы

1. Что называется коэффициентом искажения?

2. Какую аксонометрическую проекцию называют прямоугольной диметрией?

3. Какую аксонометрическую проекцию называют прямоугольной изометрией?

4. Какую аксонометрическую проекцию называют косоугольной диметрией?

Рекомендуемая литература

1. Фролов, С.А. Начертательная геометрия: Учебник. 3-е изд., перераб. и доп. – М.: ИНФРА, 2010. – 285 с.

1. Чекмарев А.А. Начертательная геометрия и черчение: Учеб.для студ. высш. учеб. Заведений. – 2 – е изд., перераб. и доп. – М.: Гуманит. изд. центр ВЛАДОС, 2005. – 471 с.: ил.

3. Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии. М.: Высш. шк., 2002. – 272 с.:ил.

4. Петлина Т.П. Начертательная геометрия. Ортогональные проекции и их преобразование: Учеб.пособие (с примерами практического использования в курсовом и дипломном проектировании). – Самара: СамВен, 2005. – 168 с.

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аксонометрические проекции

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими .

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).


Рисунок 4.1
Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α, а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.
В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

Рисунок 4.2
Здесь буквами k, m, n обозначены коэффициенты искажения по осям OX, OY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрической, если равны между собой только два коэффициента, то проекция называется диметрической, если же k≠m≠n, то проекция называется триметрической.
Если направление проецирования S перпендикулярно плоскости проекций α, то аксонометрическая проекция носит названия прямоугольной. В противном случае, аксонометрическая проекция называется косоугольной.
ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.
Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1. Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.

Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OX, OY и OZ равны 0,82. Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений. Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22, а малая – 0,71 диаметра образующей окружности D.

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.


Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´, строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47. При округлении этих параметров принимается k=n=1 и m=0,5. В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5 большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.


Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции

Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 30 0 и 60 0 .

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1.

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D, а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´, а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.


а б в
Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А1В1=АВ и С1 D1 = 0,5CD. Диаметр А 1В1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).


а б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

Построение аксонометрического изображения детали

Построение аксонометрического изображения детали, чертеж которой приведен на Рис.а.

Рис.а

Все аксонометрические проекции должны выполняться по ГОСТ 2.317-68.

Аксонометрические проекции получаются проецированием предмета и связанной с ним системы координат на одну плоскость проекций. Аксонометрии делятся на прямоугольные и косоугольные.

Для прямоугольных аксонометрических проекций проецирование осуществляется перпендикулярно плоскости проекций, причем предмет располагается так, чтобы были видны все три плоскости предмета. Это возможно, например, при расположении осей, как на прямоугольной изометрической проекции, для которой все оси проекций располагаются под углом 120 градусов (см. рис.1). Слово «изометрическая» проекция означает, что коэффициент искажения по всем трем осям одинаковый. Согласно стандарту коэффициент искажения по осям можно принять равным 1. Коэффициент искажения – это отношение размера отрезка проекции к истинному размеру отрезка на детали, измеренного вдоль оси.

Построим аксонометрию детали. Для начала зададим оси, как для прямоугольной изометрической проекции. Начнем с основания. Отложим по оси х величину длины детали 45, а по оси у величину ширины детали 30. Из каждой точки четырехугольника поднимем верх вертикальные отрезки на величину высоты основания детали 7 (Рис.2). НА аксонометрических изображениях при нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.

Далее проводим диагонали верхнего основания и находим точку, через которую будет проходить ось вращения цилиндра и отверстия. Невидимые линии нижнего основания стираем, чтобы они не мешали нашему дальнейшему построению (Рис.3)

.

Недостаток прямоугольной изометрической проекции заключается в том, что окружности во всех плоскостях будут проецироваться на аксонометрическом изображении в эллипсы. Поэтому сначала научимся строить приближенно эллипсы.

Если вписать окружность в квадрат, то у нее можно отметь 8 характерных точек: 4 точки касания окружности и середины стороны квадрата и 4 точки пересечения диагоналей квадрата с окружностью (Рис.4,а). На рис.4,в и рис.4,б показан точный способ построения точек пересечения диагонали квадрата с окружностью. На рис.4,д показан приближенный способ. При построении аксонометрические проекции половина диагонали четырехугольника, в который спроецируется квадрат, разделится в таком же соотношении.

Переносим эти свойства на нашу аксонометрию (рис.5). Строим проекцию четырехугольника, в которую проецируется квадрат. Далее строим эллипс рис.6.

Далее поднимаемся на высоту 16мм и переносим туда эллипс (Рис.7). Убираем лишние линии. Переходим к построению отверстий. Для этого строим на верху эллипс, в который спроецируется отверстие диаметром 14 (Рис.8). Далее, чтобы показать отверстие диаметром 6мм необходимо мысленно вырезать четверть детали. Для этого построим середину каждой стороны, как на рис.9. Далее строим эллипс, соответствующий окружности диаметра 6 на нижнем основании, а затем на расстоянии 14 мм от верхней части детали рисуем уже два эллипса (один соответствующий окружности диаметром 6, а другой соответствующий окружности диаметром 14) Рис.10. Далее выполняем разрез четверти детали и убираем невидимые линии (Рис.11).

Перейдем к построению ребра жесткости. Для этого на верхней плоскости основания отмеряем 3 мм от края детали и проводим отрезок длиной половине толщины ребра (1.5мм) (Рис.12), также намечаем ребро на дальней стороне детали. Угол 40 градусов нам при построении аксонометрии не подходит, поэтому рассчитываем второй катет (он будет равен 10.35мм) и по нему строим вторую точку угла по плоскости симметрии. Чтобы построить границу ребра, строим прямую на расстоянии 1.5мм от оси на верхней плоскости детали, затем проводим линии параллельно оси х до пересечения с внешним эллипсом и опускаем вертикальную прямую. Через нижнюю точку границы ребра проводим прямую параллельно ребру по плоскости разреза (Рис.13) до пересечения с вертикальной прямой. Дальше соединяем точку пересечения с точкой в плоскости разреза. Для построения дальнего ребра проводим прямую параллельную оси Х на расстоянии 1.5мм до пересечения с внешним эллипсом. Дальше находим, на каком расстоянии находится верхняя точка границы ребра (5.24мм) и такое же расстояние откладываем на вертикальной прямой с дальней стороны детали (см. Рис.14) и соединяем с дальней нижней точкой ребра.

Аксонометрические проекции

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими .

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).


Рисунок 4.1
Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α, а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.
В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

Рисунок 4.2
Здесь буквами k, m, n обозначены коэффициенты искажения по осям OX, OY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрической, если равны между собой только два коэффициента, то проекция называется диметрической, если же k≠m≠n, то проекция называется триметрической.
Если направление проецирования S перпендикулярно плоскости проекций α, то аксонометрическая проекция носит названия прямоугольной. В противном случае, аксонометрическая проекция называется косоугольной.
ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.
Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1. Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.

Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OX, OY и OZ равны 0,82. Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений. Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22, а малая – 0,71 диаметра образующей окружности D.

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.


Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´, строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47. При округлении этих параметров принимается k=n=1 и m=0,5. В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5 большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.


Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции

Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 30 0 и 60 0 .

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1.

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D, а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´, а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.


а б в
Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А1В1=АВ и С1 D1 = 0,5CD. Диаметр А 1В1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).


а б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

ПРИМЕРЫ ВЫПОЛНЕНИЯ РАЗЛИЧНЫХ ДЕТАЛЕЙ В АКСОНОМЕТРИИ

Выполнение деталей в аксонометрии поясним на примере выполнения корпуса вентиля (рис.33). Даны вертикальная и горизонтальная проекции детали. Построение аксонометрического изображения начинаем с выбора вида аксонометрической проекции. Для данного геометрического образа удобнее использовать изометрию, так как все окружности, лежащие в различных плоскостях, будут изображаться одинаковыми по форме эллипсами. Построение начинаем с вычерчивания осей Х, Y, Z. По оси Х симметрично точке О1 откладываем отрезок 12, который соответствует длине корпуса, т.е. определяем положение левого и правого торцов боковых фланцев. Из начала координатпроводим окружность, радиус которой равен 1,22* радиуса центральной внешней сферы корпуса, а по оси Z – расстояние 03′, это будет центр верхнего торца корпуса,проецирующегося тоже в эллипс, большая ось которого будет перпендикулярна оси Z1 (рис. 33, а). Далее, (рис. 33, б) и соответственно по оси Х1 и Z1 строим внутренние торцы фланцев, с помощью отрезков 14, 25, 36 находим центры искомых эллипсов. И, наконец, пристраиваем цилиндрические патрубки фланцев, примыкающие к сферической части корпуса. Изображаемая деталь требует построения разреза в аксонометрии, который может быть выполнен двумя парами секущих плоскостей: 1-ая пара – фронтальная и профильная плоскости, 2-ая пара – фронтальная и горизонтальная плоскости. Остановимся на первом варианте

( введем плоскости S1 и S2)(рис 34).

Плоскость S1 пересекает цилиндрические поверхности фланцев и патрубков по образующим АВ и СD…, а сферическую поверхность по окружностям (эллипсам). Плоскость S2 пересекает сферическую поверхность также по окружностям (эллипсам), а вертикальный патрубок и горизонтальный фланец по образующим (рис. 34).

Рис. 33. Корпус вентиля.

Рис.34. Корпус вентиля в аксонометрии

Завершающий этап построения аксонометрического изображения заключается в следующем:

а) убираем с чертежа все дополнительные построения,

б) производим обводку линий видимого контура,

в) выполняем штриховку в сечениях

Рис. 35. Горизонтальный патрубок в ортогональном изображении и в аксонометрии

Примеры выполнения графических заданий

Задание № 1. По двум видам модели построить третий вид и изометрию. Проставить размеры.

Задание № 2. По двум видам детали выполнить аксонометрические проекции.

Задание № 3. По двум видам детали построить третий. Выполнить разрезы. Проставить размеры. Изобразить деталь в изометрии с вырезом четверти.

Список рекомендуемой литературы

1. Чекмарев А.А.: Учебник для немаш. спец. вузов / А.А.Чекмарев, 7-е изд, стер. – М.: Высшая школа. 2006 г. – 365 с.:ил.

2. Боголюбов, С.К.Инженерная графика: Учебник для сред. спец. учеб. заведений по спец. техн. профиля/ С.К.Боголюбов.-3-е изд., испр. и доп.-М.: Машиностроение, 2000.-351с.

3. Левицкий, В.С.Машиностроительное черчение и автоматизация выполнения чертежей: учеб. для втузов/В.С.Левицкий.-6-е изд., перераб. и доп.; Гриф МО. — М.: Высш. шк., 2004.-435с.

Ссылка на основную публикацию
Adblock
detector