2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пример акустический расчет системы вентиляции

ТЕХНОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ МЕДИЦИНСКИХ ОРГАНИЗАЦИЙ

Акустический расчет вентиляции в медицинском центре

Пример акустического расчет от работы оборудования систем вентиляции в медицинском центре

Согласно программе расчета оборудования, наибольшее суммарное акустическое давление в окружающую среду от приточного вентилятора установки П1 составляет 60дБ. Для снижения звукового давления до допустимых значений стены венткамеры выполняются из кирпича обыкновенного (s=140мм) и минеральной ваты (s=100мм).

Расчет снижения звукового давления: , где

mэ- Эквивалентная поверхностная плотность определяется по формуле

кг/кв.м, (3.2)

где m — поверхностная плотность, кг/кв.м (для ребристых конструкций принимается без учета ребер), кг (кирпич 90кг+мин.вата 80кг)

К – коэффициент, для сплошных ограждающих конструкций плотностью 1500 кг/куб.м и более К = 1.

Получаем:

Получаем, что уровень звукового давления в контрольной точке, находящейся в смежном с венткамерой помещении, составляет : 60-33=27 дБ, что является допустимым значением.

Согласно программе расчета оборудования, наибольшее суммарное акустическое давление в окружающую среду от вытяжного вентилятора системы В1, установленного на кровле, составляет 62дБ.

Расчет звукового давления в зоне прямого звука на расстоянии до ближайшего окна жилого дома — 13 метров: Lp = L + 10 lgФ — 10 lg(Ω) — 20 lg(r) — br/1000 ,

где L – октавный уровень звуковой мощности источника шума, дБ;

Ф – фактор направленности; Ф(j) = L2(j)/L2ср, т.к. мы рассматриваем звуковую мощность испускаемую через корпус вентилятора, то эта величина одинакова во всех направлениях. Следовательно Ф(j)= 1.

Ω — пространственный угол излучения звука (Пространственный угол Ω для источника, находящегося в свободном пространстве равен 4π; для источников расположенных на поверхности территории или ограждающих конструкций зданий Ω = 2π; в двугранном угле, образованном названными поверхностями – Ω = π; в трехгранном угле – Ω = π/2.)

r – расстояние от источника шума до расчетной точки, м;

b – коэффициент поглощения звука в воздухе при 20С и относительной влажности 60% в дБ/м, если r ≤ 50м, то b=0.

Lp = 62 + 10 lg1 — 10 lg(2*3,14) — 20 lg(13) – (0*13)/1000= 62 – 7,97 – 22,27=31,76 дБ.

Мероприятия по шумоглушению:

Для снижения шума от вентиляционного оборудования до нормируемой величены предусматриваются следующие мероприятия:

— соединение воздуховодов с вентиляторами осуществляется при помощи гибких вставок;

— применяются вентиляторы в звукоизолированном корпусе;

— в воздуховодах устанавливаются шумоглушители;

— скорость воздуха в воздуховодах не превышает 5 м/с;

— стены помещений, оборудованных под венткамеры, выполняются из кирпича (толщиной 1/2 кирпича), обшиваются звукоизоляционным материалом (минераловатная плита не менее s=100мм).

Пример акустического расчета системы вентиляции офиса. Акустический расчет приточной системы вентиляции. Подбор шумоглушителя. Проведение акустического расчета

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механиче­ский шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Для вентилятора характерно существование трех независимых путей распространения шума: по воздуховодам на всасывании, по воздуховодам на нагнетании, через стенки кожуха в окружающее пространство. В при­точных системах наиболее опасным является распространение шума в сторону нагнетания, в вытяжных — в сторону всасывания. Уровни звуко­вого давления по этим направлениям, измеренные в соответствии со стандартами, указываются в паспортных данных и каталогах вентиляци­онного оборудования.

Для уменьшения шума и вибрации проводится ряд предупредительных мер: тщательная балансировка рабочего колеса вентилятора; применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД); крепление вентиляторных агрегатов на виброоснова­ниях; присоединение вентиляторов к воздуховодам с помощью гибких вставок; обеспечение допустимых скоростей движения воздуха в воздухо­водах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума в вентилируемых помещениях применяют специальные шумоглушители.

Шумоглушители бывают трубчатые, пластинчатые и камерного типа.

Трубчатые глушители выполняются в виде прямого участка металли­ческого воздуховода круглого или прямоугольного сечения, облицованного изнутри звукопоглощающим материалом, применяются при площади сече­ния воздуховодов до 0,25 м 2 .

При больших сечениях применяются пластинчатые глушители, основ­ным элементом которых является звукопоглощающая пластина — металли­ческая перфорированная по бокам коробка, заполненная звукопоглощаю­щим материалом. Пластины устанавливаются в прямоугольном кожухе.

Шумоглушители обычно устанавливаются в приточных механических системах вентиляции общественных зданий со стороны нагнетания, в вы­тяжных системах — со стороны всасывания. Необходимость установки шу­моглушителей определяется на основании акустического расчета вентиля­ционной системы. Смысл акустического расчета:

1) устанавливается допустимый уровень звукового давления для дан­ного помещения;

2) определяется уровень звуковой мощности вентилятора;

3) определяется снижение уровня звукового давления в вентиляцион­ной сети (на прямых участках воздуховодов, в тройниках и т.п.);

4) определяется уровень звукового давления в расчетной точке поме­щения, ближе всего расположенного к вентилятору со стороны нагнетания для приточной системы и со стороны всасывания — для вытяжной системы;

5) сравнивается уровень звукового давления в расчетной точке поме­щения с допустимым уровнем;

6) в случае превышения подбирается шумоглушитель необходимой конструкции и длины, определяется аэродинамическое сопротивление глу­шителя.

СНиП устанавливает допустимые уровни звукового давления, дБ, для различных помещений по среднегеометрическим частотам: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Наиболее интенсивно шум вентилятора про­является в низких октавных полосах (до 300 Гц), поэтому в курсовом про­екте акустический расчет производится в октавных полосах 125, 250 Гц.

В курсовом проекте необходимо произвести акустический расчет приточной системы вентиляции центра долголетия и подобрать шумоглушитель. Ближайшее помещение со стороны нагнетания вентилятора – комната наблюдения(дежурный) размером 3,7×4,1×3 (h) м, объемом 45,5 м 3 , воздух поступает через жалюзийную решетку типа Р150 размером 150×150 мм. Скорость выхода воздуха не превышает 3 м/с. Воздух из решетки выходит параллельно потолку (угол Θ = 0°). В приточной камере установлен радиальный вентилятор ВЦ4 75-4 с параметрами: производи­тельность L = 2170 м 3 /ч, развиваемое давление Р = 315,1 Па, частота вращения n= =1390 об/мин. Диаметр колеса вентилятора D=0,9 ·D ном.

Схема расчетной ветви воздуховодов представлена на рис. 13.1а

1) Устанавливаем допустимый уровень звукового давления для данного помещения .

2) Определяем октановый уровень звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, дБ, по формуле:

Так как расчет мы выполняем для двух октановых полос, то удобно пользоваться таблицей. Результаты расчета октавного уровня звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, заносим в табл. 13.1.

Как рассчитать и нивелировать шум от вентсистем

Вентиляционные системы шумят и вибрируют. Интенсивность и область распространения звуков зависит от места расположения основных агрегатов, протяжённости воздуховодов, общей производительности, а также типа здания и его функционального назначения. Расчёт шума от вентиляции призван подобрать механизмы работы и используемые материалы, при которых он не будет выходить за рамки нормативных значений, и входит в проект вентсистем, как один из пунктов.

Образование шума

Вентиляционные системы состоят из отдельных элементов, каждый из которых является источником неприятных звуков:

  • У вентилятора это может быть лопасть или двигатель. Лопасть шумит из-за резкого перепада давления с одной и другой стороны. Двигатель — из-за поломки или неправильной установки. Охлаждающие установки издают шум по тем же причинам, также добавляется неправильная работа компрессора.
  • Воздуховоды. Есть две причины: первая – вихревые образования из воздуха, ударяющиеся о стенки. Подробнее мы об этом говорили в статье «Как выполняется расчет воздуховодов вентиляции». Вторая – гул в местах изменения сечения воздуховода. Проблемы решаются снижением скорости движения газа.
  • Строительные конструкции. Побочные шум от вибраций вентиляторов и других установок, передающиеся на элементы здания. Решение осуществляется за счет монтажа специальных опор или прокладок для гашения вибрации. Наглядный пример — кондиционер в квартире: если внешний блок закреплен не во всех точках, или монтажники забыли поставить защитные прокладки, то его работа может доставлять акустический дискомфорт у хозяев установки или их соседей.

Обобщенный показатель выделения шума основных вентиляционных установок

Способы передачи

Существует три пути распространения звука, и, чтобы рассчитать звуковую нагрузку, надо знать, как именно он передаётся всеми тремя способами:

  • Воздушный: шум от работающих установок. Распространяется как внутри, так и снаружи здания. Основной источник нагрузки для людей. Например, крупный магазин, кондиционеры и холодильные установки у которого расположены с тыльной части здания. Звуковые волны распространяются во все стороны до близлежащих домов.
  • Гидравлический: источник шума — трубы с жидкостью. Звуковые волны передаются на большие расстояния по всему зданию. Вызывается изменением размера сечения трубопровода и нарушением работы компрессора.
  • Вибрационный: источник — строительные конструкции. Вызывается неправильной установкой вентиляторов или других частей системы. Передаётся по всему зданию и за его пределы.

Способ замера

Часто требуется замерить допустимый уровень шума или интенсивность вибраций в уже смонтированных, работающих системах вентиляции. Классический способ измерения подразумевает использование специального прибора «шумомера»: он определяет силу распространения звуковых волн. Замер ведётся с использованием трёх фильтров, позволяющих отсекать ненужные звуки за границей исследуемой зоны. Первый фильтр – замеряет звук, интенсивность которого не превышает 50 дБ. Второй – от 50 до 85 дБ. Третий – свыше 80 дБ.

Вибрации измеряются в Герцах (Гц) для нескольких точек. Например, в непосредственной близости от источника шума, затем на определенном расстоянии, после этого — в самой отдалённой точке.

Нормы и правила

Правила расчёта шума от работы вентиляции и алгоритмы выполнения вычислений указаны в СНиП 23-03-2003 «Защита от шума»; ГОСТ 12.1.023-80 «Система стандартов безопасности труда (ССБТ). Шум. Методы установления значений шумовых характеристик стационарных машин».

Нормы шумов в помещениях

При определении звуковой нагрузки около зданий необходимо помнить, что нормативные значения даны для интервально-работающей механической вентиляции и открытых окнах. Если берутся в расчёт закрытые окна и принудительная система воздухообмена, способная обеспечить проектную кратность, то в качестве норм используются другие параметры. Предельный уровень шума вокруг здания повышается до границы, позволяющей сохранить нормативные параметры внутри помещения.

Требования по уровню звуковой нагрузки для жилы и общественных зданий зависят от их категории:

  1. А – наилучшие условия.
  2. Б — комфортная среда.
  3. В – уровень шума на границе предельного.

Допустимые нормы вибраций

Акустический расчёт

Применяется проектировщиками для определения шумопоглащения. Основная задача акустического расчета – вычислить актавный спектр звуковых нагрузок во всех точках, определённых заранее, а полученное значение сравнить с нормативным, максимально допустимыми. При необходимост снизить до установленных стандартов.

Расчёт выполняется по шумовым характеристикам ветиляционного оборудования, они должны указываться в технической документации.

  • непосредственное место установки оборудования;
  • соседние помещения;
  • все помещения, где работает вентсистема, включая подвальные;
  • комнаты транзитного приложения воздушных каналов;
  • места впуска приточки или выпуска вытяжки.

Акустический расчёт выполнятся по двум основным формулам, выбор которых зависит от места расположения точки.

  1. Точка расчёта берётся внутри здания, в непосредственно близости от вентилятора. Звуковое давление зависит от мощности и количества вентиляторов, направленности волн и других параметров. Формула 1 для определения октавных уровней звукового давления от одного или нескольких вентиляторов выглядит так:

Формула 1

где LPi — мощность звука в каждой октаве;
∆Lпомi — уменьшение интенсивности шумовой нагрузки, связанное с разнонаправленным движением звуковых волн и потерями мощности от распространения в воздушной среде;

По формуле 2 определяется ∆Lпомi:

Формула 2

где Фi — безразмерный фактор вектора распространения волн;
S —площадь сферы или полусферы, которая захватывает вентилятор и точку расчёта, м 2 ;
B — неизменное значение акустической постоянной в помещении, м 2 .

  1. Точка расчёта берётся за пределами здания на близлежащей территории. Звук от работы распространяется через стенки вентшахт, решётки и корпус вентилятора. Условно принимается, что источник шума — точечный (расстояние от вентилятора до расчетной позиции на порядок больше, чем размер аппарата). Тогда октавный уровень шумового давления вычисляется по формуле 3:

Формула 3

где LPоктi — октавная мощность источника шума, дБ;
∆LPсетиi — потеря мощности звука при его распространение по воздуховоду, дБ;
∆Lнi — показатель направленности излучения звука, дБ;
r — длина отрезка от вентилятора до точки расчёта, м;
W — угол излучения звука в пространстве;
ba — снижение интенсивности шума в атмосфере, дБ/км.

Если на одну точку действует несколько источников шума, например, вентилятор и кондиционер, то методика вычислений немного меняется. Нельзя просто взять и сложить все источники, поэтому опытные проектировщики идут по другому пути, убирая все ненужные данные. Вычисляется разница между наибольшим и наименьшим по интенсивности источником, а полученное значение сравнивается с нормативным параметром и плюсуется к уровню наибольшего.

Снижение звуковой нагрузки от работы вентилятора

Существует комплекс мер, позволяющих нивелировать неприятные человеческому уху факторы шума от работы вентилятора:

  • Выбор оборудования. Профессиональный проектировщик, в отличие от дилетанта, всегда обращает внимание на шум от системы и подбирает вентиляторы, обеспечивающие нормативные параметры микроклимата, но, при этом, без большого запаса по мощности. На рынке представлен широкий ассортимент вентиляторов с глушителями, они хорошо защищают от неприятных звуков и вибраций.
  • Выбор места установки. Мощное вентиляционное оборудование монтируется только за пределами обслуживаемого помещения: это может быть крыша или специальная камера. Например, если поставить вентилятор на чердак в панельном доме, то жильцы на последнем этаже сразу почувствуют дискомфорт. Поэтому в таких случаях используются только крышные вентиляторы.
  • Подбор скорости движения воздуха по каналам. Проектировщики исходят из акустического расчёта. Например, для классического воздуховода 300×900 мм она не более 10 м/с.
  • Виброизоляция, звукоизоляция и экранирование. Виброизоляция предполагает установку специальных опор, которые гасят вибрации. Звукоизоляция осуществляется оклейкой корпусов специальным материалом. Экранирование включает в себя отсечение источника звука от здания или помещения с помощью щита.

Виброопора

Расчёт шума от вентиляционных систем предполагает нахождение таких технических решений, когда работа оборудования не будет мешать людям. Это сложная задача, требующая навыков и опыта в этой области.

Пример расчета

В компании «Мега.ру» давно занимаются вопросами вентилирования и создания оптимальных условий микроклимата. Наши специалисты решают проблемы любой сложности. Мы работаем в Москве и граничащих с ней регионах. Служба технической поддержки ответит на все вопросы по телефонам, указанным на странице «Контакты». Возможно удалённое сотрудничество. Обращайтесь!

Как рассчитать и нивелировать шум от вентсистем. Акустический расчет системы вентиляции и кондиционирования в современных зданиях Пример акустического расчета системы вентиляции салона красоты

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механиче­ский шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Для вентилятора характерно существование трех независимых путей распространения шума: по воздуховодам на всасывании, по воздуховодам на нагнетании, через стенки кожуха в окружающее пространство. В при­точных системах наиболее опасным является распространение шума в сторону нагнетания, в вытяжных — в сторону всасывания. Уровни звуко­вого давления по этим направлениям, измеренные в соответствии со стандартами, указываются в паспортных данных и каталогах вентиляци­онного оборудования.

Для уменьшения шума и вибрации проводится ряд предупредительных мер: тщательная балансировка рабочего колеса вентилятора; применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД); крепление вентиляторных агрегатов на виброоснова­ниях; присоединение вентиляторов к воздуховодам с помощью гибких вставок; обеспечение допустимых скоростей движения воздуха в воздухо­водах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума в вентилируемых помещениях применяют специальные шумоглушители.

Шумоглушители бывают трубчатые, пластинчатые и камерного типа.

Трубчатые глушители выполняются в виде прямого участка металли­ческого воздуховода круглого или прямоугольного сечения, облицованного изнутри звукопоглощающим материалом, применяются при площади сече­ния воздуховодов до 0,25 м 2 .

При больших сечениях применяются пластинчатые глушители, основ­ным элементом которых является звукопоглощающая пластина — металли­ческая перфорированная по бокам коробка, заполненная звукопоглощаю­щим материалом. Пластины устанавливаются в прямоугольном кожухе.

Шумоглушители обычно устанавливаются в приточных механических системах вентиляции общественных зданий со стороны нагнетания, в вы­тяжных системах — со стороны всасывания. Необходимость установки шу­моглушителей определяется на основании акустического расчета вентиля­ционной системы. Смысл акустического расчета:

1) устанавливается допустимый уровень звукового давления для дан­ного помещения;

2) определяется уровень звуковой мощности вентилятора;

3) определяется снижение уровня звукового давления в вентиляцион­ной сети (на прямых участках воздуховодов, в тройниках и т.п.);

4) определяется уровень звукового давления в расчетной точке поме­щения, ближе всего расположенного к вентилятору со стороны нагнетания для приточной системы и со стороны всасывания — для вытяжной системы;

5) сравнивается уровень звукового давления в расчетной точке поме­щения с допустимым уровнем;

6) в случае превышения подбирается шумоглушитель необходимой конструкции и длины, определяется аэродинамическое сопротивление глу­шителя.

СНиП устанавливает допустимые уровни звукового давления, дБ, для различных помещений по среднегеометрическим частотам: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Наиболее интенсивно шум вентилятора про­является в низких октавных полосах (до 300 Гц), поэтому в курсовом про­екте акустический расчет производится в октавных полосах 125, 250 Гц.

В курсовом проекте необходимо произвести акустический расчет приточной системы вентиляции центра долголетия и подобрать шумоглушитель. Ближайшее помещение со стороны нагнетания вентилятора – комната наблюдения(дежурный) размером 3,7×4,1×3 (h) м, объемом 45,5 м 3 , воздух поступает через жалюзийную решетку типа Р150 размером 150×150 мм. Скорость выхода воздуха не превышает 3 м/с. Воздух из решетки выходит параллельно потолку (угол Θ = 0°). В приточной камере установлен радиальный вентилятор ВЦ4 75-4 с параметрами: производи­тельность L = 2170 м 3 /ч, развиваемое давление Р = 315,1 Па, частота вращения n= =1390 об/мин. Диаметр колеса вентилятора D=0,9 ·D ном.

Схема расчетной ветви воздуховодов представлена на рис. 13.1а

1) Устанавливаем допустимый уровень звукового давления для данного помещения .

2) Определяем октановый уровень звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, дБ, по формуле:

Так как расчет мы выполняем для двух октановых полос, то удобно пользоваться таблицей. Результаты расчета октавного уровня звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, заносим в табл. 13.1.

3) Определяем снижение звуковой мощности в элементах вентиляционной сети, дБ:

где — сумма снижений уровня звукового давления в различных элементах сети воздуховода до входа в расчетное помещение.

3.1. Снижение уровня звуковой мощности на участках металлического воздуховода круглого сечения:

Значение снижения уровня звуковой мощности в металлических воздуховодах круглого сечения принимаем по

3.2. Снижение уровня звуковой мощности в плавных поворотах воздуховодов, определяем по . При плавном повороте шириной 125-500 мм – 0 дБ.

3.3. Снижение октановых уровней звуковой мощности в разветвлении, дБ:

где m n – отношение площадей сечений воздуховодов ;

Площадь сечения воздуховода ответвления, м 2 ;

Площадь сечения воздуховода перед ответвлением, м 2 ;

Суммарная площадь поперечных сечений воздуховодов ответвлений, м 2 .

Узлы разветвлений для вентиляционной системы (рис. 13.1а) показаны на рисунках 13.1, 13.2,13.3,13.4

Расчет для полос 125 Гц и 250 Гц.

Для тройника — поворота (узел 1):

Для тройника – поворота (узел 2):

Для тройника – поворота (узел 3):

Для тройника – поворота (узел 4):

3.4. Потери звуковой мощности в результате отражения звука от приточной решетки Р150 для частоты 125 Гц — 15 дБ, 250 Гц – 9дБ .

Суммарное снижение уровня звуковой мощности в вентиляционной сети до расчетного помещения

В октановой полосе 125 Гц:

В октановой полосе 250 Гц:

4)Определяем октановые уровни звукового давления в расчетной точке помещения. При объеме помещения до 120 м 3 и при расположении расчетной точки не менее чем на 2м от решетки средний по помещению октановый уровень звукового давления в помещении, дБ,можно определять:

В – постоянная помещения, м 2 .

Постоянную помещения в октановых полосах частот следует определять по формуле

Так как октавный уровень звуковой мощности в расчетной точке помещения меньше допустимого(для среднегеометрической частоты 125 48,5

где f — частота в гц;

D — средний поперечный размер воздуховода (эквивалентный диаметр) в м; v — средняя скорость на входе в рассматриваемый элемент в м/сек.

Поправки AL) для определения октавных уровней звуковой мощности шума дросселирующих устройств в дб

Частотный параметр f

Примечание Промежуточные значения в табл 5 следует принимать по интерполяции

2.11. Октавные уровни звуковой мощности шума, создаваемого в плафонах и решетках, следует рассчитывать по формуле (2), принимая поправки ALi по данным табл. 6.

2.12. Если скорость движения воздуха перед воздухо-распределительным или воздухозаборным устройством (плафон, решетка и т. п.) не превышает допускаемой величины о доп, то создаваемый в них шум прн расчете

Поправки ALi, учитывающие распределение звуковой мощности шума плафонов н решеток по октавным полосам, в дб

Плафон ВНИИГС (отрывная

Плафон ВНИИГС (настильная

необходимого снижения уровней звукового давления (см. раздел 5) можно не учитывать

2.13. Допускаемую скорость движения воздуха перед воздухораспределительным или воздухозаборным устройством установок следует определять по формуле

у Д оп = 0,7 10* м/сек;

где Ь доп — допустимый по нормам октавный уровень звукового давления в дб; п — число плафонов или решеток в рассматриваемом помещении;

В — постоянная помещения в рассматриваемой октавной полосе в м 2 , принимаемая в соответствии с пп. 3.4 или 3.5;

AZ-i — поправка, учитывающая распределение уровней звуковой мощности плафонов и решеток по октавным полосам, принимаемая по табл. 6, в дб;

Д — поправка на расположение источника шума; при расположении источника в рабочей зоне (не выше 2 м от пола), А = 3 дб; если источник выше этой зоны, А *■ 0;

0,7 — коэффициент запаса;

F, Б — обозначения те же, что и в п. 2.9, формула (5).

Примечание. Определение допускаемой скорости движения воздуха производится только для одной частоты, которая равна для плафонов ВНИИГС 250 Щ, для дисковых плафонов 500 гц, для анемостатов и решеток 2000 гц.

2.14. В целях снижения уровня звуковой мощности шума, генерируемого поворотами и тройниками воздуховодов, участков резкого изменения площади поперечного сечения и т. п., следует ограничивать скорости движения воздуха в магистральных воздуховодах общественных зданий и вспомогательных зданий промышленных предприятий до 5-6 м/сек, а на ответвлениях до 2-4 м/сек. Для производственных здании эти скорости можно соответственно увеличивать в два раза, если по технологическим и другим требованиям это допустимо.

3. РАСЧЕТ ОКТАВНЫХ УРОВНЕЙ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНЫХ ТОЧКАХ

3.1. Октавные уровни звукового давления на постоянных рабочих местах или в помещениях (в расчетных точках) не должны превышать установленных нормами.

(П р им е ч а ни я: 1. Если нормативные требования к уровням звукового давления различны в течение суток, то акустический расчет установок следует производить на наиболее низкие допустимые уровни звукового давления.

2. Уровни звукового давления на постоянных рабочих местах или в помещениях (в расчетных точках) зависят от звуковой мощности и расположения источников шума и звукопоглощающих качеств рассматриваемого помещения.

3.2. При определении октавных уровней звукового давления расчет следует производить для постоянных рабочих мест или расчетных точек в помещениях, наиболее близко расположенных к источникам шума (отопительно-вентиляционным агрегатам, воздухораспределительным или воздухозаборным устройствам, воздушным или воздушно-тепловым завесам и т. п.). На прилегающей территории за расчетные точки следует принимать точки, ближайшие к источникам шума (вентиляторы, открыто расположенные на территории, вытяжные или воздухозаборные шахты, выбросные устройства вентиляционных установок и т. п.), для которых нормируются уровни звукового давления.

а — источники шума (автономный кондиционер и плафон) и расчетная точка находятся в одном помещении; б — источники шума (вентилятор и элементы установки) и расчетная точка находятся в различных помещениях; в — источник шума — вентилятор находится в помещении, расчетная точка — на прилета ницей территории; 1 — автономный кондиционер; 2 — расчетная точка; 3 — генерирующий шум плафон; 4 — виброизолиро-ванный вентилятор; 5 — гибкая вставка; в — центральный глушитель; 7 — внезапное сужение сечения воздуховода; 8 — разветвление воздуховода; 9 — прямоугольный поворот с направляющими лопатками; 10 — плавный поворот воздуховода; 11 — прямоугольный поворот воздуховода; 12 — решетка; / учитывающая влияние присоединения вентилятора или дросселирующего устройства к сети воздуховодов в дб

Корень квадратный нз площади поперечного сечения патрубка вентилятора или воздуховода в мм

Пример акустического расчета системы вентиляции офиса. Акустический расчет приточной системы вентиляции. Подбор шумоглушителя. Проведение акустического расчета

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механиче­ский шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Для вентилятора характерно существование трех независимых путей распространения шума: по воздуховодам на всасывании, по воздуховодам на нагнетании, через стенки кожуха в окружающее пространство. В при­точных системах наиболее опасным является распространение шума в сторону нагнетания, в вытяжных — в сторону всасывания. Уровни звуко­вого давления по этим направлениям, измеренные в соответствии со стандартами, указываются в паспортных данных и каталогах вентиляци­онного оборудования.

Для уменьшения шума и вибрации проводится ряд предупредительных мер: тщательная балансировка рабочего колеса вентилятора; применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД); крепление вентиляторных агрегатов на виброоснова­ниях; присоединение вентиляторов к воздуховодам с помощью гибких вставок; обеспечение допустимых скоростей движения воздуха в воздухо­водах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума в вентилируемых помещениях применяют специальные шумоглушители.

Шумоглушители бывают трубчатые, пластинчатые и камерного типа.

Трубчатые глушители выполняются в виде прямого участка металли­ческого воздуховода круглого или прямоугольного сечения, облицованного изнутри звукопоглощающим материалом, применяются при площади сече­ния воздуховодов до 0,25 м 2 .

При больших сечениях применяются пластинчатые глушители, основ­ным элементом которых является звукопоглощающая пластина — металли­ческая перфорированная по бокам коробка, заполненная звукопоглощаю­щим материалом. Пластины устанавливаются в прямоугольном кожухе.

Шумоглушители обычно устанавливаются в приточных механических системах вентиляции общественных зданий со стороны нагнетания, в вы­тяжных системах — со стороны всасывания. Необходимость установки шу­моглушителей определяется на основании акустического расчета вентиля­ционной системы. Смысл акустического расчета:

1) устанавливается допустимый уровень звукового давления для дан­ного помещения;

2) определяется уровень звуковой мощности вентилятора;

3) определяется снижение уровня звукового давления в вентиляцион­ной сети (на прямых участках воздуховодов, в тройниках и т.п.);

4) определяется уровень звукового давления в расчетной точке поме­щения, ближе всего расположенного к вентилятору со стороны нагнетания для приточной системы и со стороны всасывания — для вытяжной системы;

5) сравнивается уровень звукового давления в расчетной точке поме­щения с допустимым уровнем;

6) в случае превышения подбирается шумоглушитель необходимой конструкции и длины, определяется аэродинамическое сопротивление глу­шителя.

СНиП устанавливает допустимые уровни звукового давления, дБ, для различных помещений по среднегеометрическим частотам: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Наиболее интенсивно шум вентилятора про­является в низких октавных полосах (до 300 Гц), поэтому в курсовом про­екте акустический расчет производится в октавных полосах 125, 250 Гц.

В курсовом проекте необходимо произвести акустический расчет приточной системы вентиляции центра долголетия и подобрать шумоглушитель. Ближайшее помещение со стороны нагнетания вентилятора – комната наблюдения(дежурный) размером 3,7×4,1×3 (h) м, объемом 45,5 м 3 , воздух поступает через жалюзийную решетку типа Р150 размером 150×150 мм. Скорость выхода воздуха не превышает 3 м/с. Воздух из решетки выходит параллельно потолку (угол Θ = 0°). В приточной камере установлен радиальный вентилятор ВЦ4 75-4 с параметрами: производи­тельность L = 2170 м 3 /ч, развиваемое давление Р = 315,1 Па, частота вращения n= =1390 об/мин. Диаметр колеса вентилятора D=0,9 ·D ном.

Схема расчетной ветви воздуховодов представлена на рис. 13.1а

1) Устанавливаем допустимый уровень звукового давления для данного помещения .

2) Определяем октановый уровень звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, дБ, по формуле:

Так как расчет мы выполняем для двух октановых полос, то удобно пользоваться таблицей. Результаты расчета октавного уровня звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, заносим в табл. 13.1.

ТЕХНОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ МЕДИЦИНСКИХ ОРГАНИЗАЦИЙ

Акустический расчет вентиляции в медицинском центре

Пример акустического расчет от работы оборудования систем вентиляции в медицинском центре

Согласно программе расчета оборудования, наибольшее суммарное акустическое давление в окружающую среду от приточного вентилятора установки П1 составляет 60дБ. Для снижения звукового давления до допустимых значений стены венткамеры выполняются из кирпича обыкновенного (s=140мм) и минеральной ваты (s=100мм).

Расчет снижения звукового давления: , где

mэ- Эквивалентная поверхностная плотность определяется по формуле

кг/кв.м, (3.2)

где m — поверхностная плотность, кг/кв.м (для ребристых конструкций принимается без учета ребер), кг (кирпич 90кг+мин.вата 80кг)

К – коэффициент, для сплошных ограждающих конструкций плотностью 1500 кг/куб.м и более К = 1.

Получаем:

Получаем, что уровень звукового давления в контрольной точке, находящейся в смежном с венткамерой помещении, составляет : 60-33=27 дБ, что является допустимым значением.

Согласно программе расчета оборудования, наибольшее суммарное акустическое давление в окружающую среду от вытяжного вентилятора системы В1, установленного на кровле, составляет 62дБ.

Расчет звукового давления в зоне прямого звука на расстоянии до ближайшего окна жилого дома — 13 метров: Lp = L + 10 lgФ — 10 lg(Ω) — 20 lg(r) — br/1000 ,

где L – октавный уровень звуковой мощности источника шума, дБ;

Ф – фактор направленности; Ф(j) = L2(j)/L2ср, т.к. мы рассматриваем звуковую мощность испускаемую через корпус вентилятора, то эта величина одинакова во всех направлениях. Следовательно Ф(j)= 1.

Ω — пространственный угол излучения звука (Пространственный угол Ω для источника, находящегося в свободном пространстве равен 4π; для источников расположенных на поверхности территории или ограждающих конструкций зданий Ω = 2π; в двугранном угле, образованном названными поверхностями – Ω = π; в трехгранном угле – Ω = π/2.)

r – расстояние от источника шума до расчетной точки, м;

b – коэффициент поглощения звука в воздухе при 20С и относительной влажности 60% в дБ/м, если r ≤ 50м, то b=0.

Lp = 62 + 10 lg1 — 10 lg(2*3,14) — 20 lg(13) – (0*13)/1000= 62 – 7,97 – 22,27=31,76 дБ.

Мероприятия по шумоглушению:

Для снижения шума от вентиляционного оборудования до нормируемой величены предусматриваются следующие мероприятия:

— соединение воздуховодов с вентиляторами осуществляется при помощи гибких вставок;

— применяются вентиляторы в звукоизолированном корпусе;

— в воздуховодах устанавливаются шумоглушители;

— скорость воздуха в воздуховодах не превышает 5 м/с;

— стены помещений, оборудованных под венткамеры, выполняются из кирпича (толщиной 1/2 кирпича), обшиваются звукоизоляционным материалом (минераловатная плита не менее s=100мм).

Ссылка на основную публикацию
Adblock
detector