0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пример акустического расчета системы вентиляции

ТЕХНОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ МЕДИЦИНСКИХ ОРГАНИЗАЦИЙ

Акустический расчет вентиляции в медицинском центре

Пример акустического расчет от работы оборудования систем вентиляции в медицинском центре

Согласно программе расчета оборудования, наибольшее суммарное акустическое давление в окружающую среду от приточного вентилятора установки П1 составляет 60дБ. Для снижения звукового давления до допустимых значений стены венткамеры выполняются из кирпича обыкновенного (s=140мм) и минеральной ваты (s=100мм).

Расчет снижения звукового давления: , где

mэ- Эквивалентная поверхностная плотность определяется по формуле

кг/кв.м, (3.2)

где m — поверхностная плотность, кг/кв.м (для ребристых конструкций принимается без учета ребер), кг (кирпич 90кг+мин.вата 80кг)

К – коэффициент, для сплошных ограждающих конструкций плотностью 1500 кг/куб.м и более К = 1.

Получаем:

Получаем, что уровень звукового давления в контрольной точке, находящейся в смежном с венткамерой помещении, составляет : 60-33=27 дБ, что является допустимым значением.

Согласно программе расчета оборудования, наибольшее суммарное акустическое давление в окружающую среду от вытяжного вентилятора системы В1, установленного на кровле, составляет 62дБ.

Расчет звукового давления в зоне прямого звука на расстоянии до ближайшего окна жилого дома — 13 метров: Lp = L + 10 lgФ — 10 lg(Ω) — 20 lg(r) — br/1000 ,

где L – октавный уровень звуковой мощности источника шума, дБ;

Ф – фактор направленности; Ф(j) = L2(j)/L2ср, т.к. мы рассматриваем звуковую мощность испускаемую через корпус вентилятора, то эта величина одинакова во всех направлениях. Следовательно Ф(j)= 1.

Ω — пространственный угол излучения звука (Пространственный угол Ω для источника, находящегося в свободном пространстве равен 4π; для источников расположенных на поверхности территории или ограждающих конструкций зданий Ω = 2π; в двугранном угле, образованном названными поверхностями – Ω = π; в трехгранном угле – Ω = π/2.)

r – расстояние от источника шума до расчетной точки, м;

b – коэффициент поглощения звука в воздухе при 20С и относительной влажности 60% в дБ/м, если r ≤ 50м, то b=0.

Lp = 62 + 10 lg1 — 10 lg(2*3,14) — 20 lg(13) – (0*13)/1000= 62 – 7,97 – 22,27=31,76 дБ.

Мероприятия по шумоглушению:

Для снижения шума от вентиляционного оборудования до нормируемой величены предусматриваются следующие мероприятия:

— соединение воздуховодов с вентиляторами осуществляется при помощи гибких вставок;

— применяются вентиляторы в звукоизолированном корпусе;

— в воздуховодах устанавливаются шумоглушители;

— скорость воздуха в воздуховодах не превышает 5 м/с;

— стены помещений, оборудованных под венткамеры, выполняются из кирпича (толщиной 1/2 кирпича), обшиваются звукоизоляционным материалом (минераловатная плита не менее s=100мм).

Как рассчитать и нивелировать шум от вентсистем

Вентиляционные системы шумят и вибрируют. Интенсивность и область распространения звуков зависит от места расположения основных агрегатов, протяжённости воздуховодов, общей производительности, а также типа здания и его функционального назначения. Расчёт шума от вентиляции призван подобрать механизмы работы и используемые материалы, при которых он не будет выходить за рамки нормативных значений, и входит в проект вентсистем, как один из пунктов.

Образование шума

Вентиляционные системы состоят из отдельных элементов, каждый из которых является источником неприятных звуков:

  • У вентилятора это может быть лопасть или двигатель. Лопасть шумит из-за резкого перепада давления с одной и другой стороны. Двигатель — из-за поломки или неправильной установки. Охлаждающие установки издают шум по тем же причинам, также добавляется неправильная работа компрессора.
  • Воздуховоды. Есть две причины: первая – вихревые образования из воздуха, ударяющиеся о стенки. Подробнее мы об этом говорили в статье «Как выполняется расчет воздуховодов вентиляции». Вторая – гул в местах изменения сечения воздуховода. Проблемы решаются снижением скорости движения газа.
  • Строительные конструкции. Побочные шум от вибраций вентиляторов и других установок, передающиеся на элементы здания. Решение осуществляется за счет монтажа специальных опор или прокладок для гашения вибрации. Наглядный пример — кондиционер в квартире: если внешний блок закреплен не во всех точках, или монтажники забыли поставить защитные прокладки, то его работа может доставлять акустический дискомфорт у хозяев установки или их соседей.

Обобщенный показатель выделения шума основных вентиляционных установок

Способы передачи

Существует три пути распространения звука, и, чтобы рассчитать звуковую нагрузку, надо знать, как именно он передаётся всеми тремя способами:

  • Воздушный: шум от работающих установок. Распространяется как внутри, так и снаружи здания. Основной источник нагрузки для людей. Например, крупный магазин, кондиционеры и холодильные установки у которого расположены с тыльной части здания. Звуковые волны распространяются во все стороны до близлежащих домов.
  • Гидравлический: источник шума — трубы с жидкостью. Звуковые волны передаются на большие расстояния по всему зданию. Вызывается изменением размера сечения трубопровода и нарушением работы компрессора.
  • Вибрационный: источник — строительные конструкции. Вызывается неправильной установкой вентиляторов или других частей системы. Передаётся по всему зданию и за его пределы.

Способ замера

Часто требуется замерить допустимый уровень шума или интенсивность вибраций в уже смонтированных, работающих системах вентиляции. Классический способ измерения подразумевает использование специального прибора «шумомера»: он определяет силу распространения звуковых волн. Замер ведётся с использованием трёх фильтров, позволяющих отсекать ненужные звуки за границей исследуемой зоны. Первый фильтр – замеряет звук, интенсивность которого не превышает 50 дБ. Второй – от 50 до 85 дБ. Третий – свыше 80 дБ.

Вибрации измеряются в Герцах (Гц) для нескольких точек. Например, в непосредственной близости от источника шума, затем на определенном расстоянии, после этого — в самой отдалённой точке.

Нормы и правила

Правила расчёта шума от работы вентиляции и алгоритмы выполнения вычислений указаны в СНиП 23-03-2003 «Защита от шума»; ГОСТ 12.1.023-80 «Система стандартов безопасности труда (ССБТ). Шум. Методы установления значений шумовых характеристик стационарных машин».

Нормы шумов в помещениях

При определении звуковой нагрузки около зданий необходимо помнить, что нормативные значения даны для интервально-работающей механической вентиляции и открытых окнах. Если берутся в расчёт закрытые окна и принудительная система воздухообмена, способная обеспечить проектную кратность, то в качестве норм используются другие параметры. Предельный уровень шума вокруг здания повышается до границы, позволяющей сохранить нормативные параметры внутри помещения.

Требования по уровню звуковой нагрузки для жилы и общественных зданий зависят от их категории:

  1. А – наилучшие условия.
  2. Б — комфортная среда.
  3. В – уровень шума на границе предельного.

Допустимые нормы вибраций

Акустический расчёт

Применяется проектировщиками для определения шумопоглащения. Основная задача акустического расчета – вычислить актавный спектр звуковых нагрузок во всех точках, определённых заранее, а полученное значение сравнить с нормативным, максимально допустимыми. При необходимост снизить до установленных стандартов.

Расчёт выполняется по шумовым характеристикам ветиляционного оборудования, они должны указываться в технической документации.

  • непосредственное место установки оборудования;
  • соседние помещения;
  • все помещения, где работает вентсистема, включая подвальные;
  • комнаты транзитного приложения воздушных каналов;
  • места впуска приточки или выпуска вытяжки.

Акустический расчёт выполнятся по двум основным формулам, выбор которых зависит от места расположения точки.

  1. Точка расчёта берётся внутри здания, в непосредственно близости от вентилятора. Звуковое давление зависит от мощности и количества вентиляторов, направленности волн и других параметров. Формула 1 для определения октавных уровней звукового давления от одного или нескольких вентиляторов выглядит так:

Формула 1

где LPi — мощность звука в каждой октаве;
∆Lпомi — уменьшение интенсивности шумовой нагрузки, связанное с разнонаправленным движением звуковых волн и потерями мощности от распространения в воздушной среде;

По формуле 2 определяется ∆Lпомi:

Формула 2

где Фi — безразмерный фактор вектора распространения волн;
S —площадь сферы или полусферы, которая захватывает вентилятор и точку расчёта, м 2 ;
B — неизменное значение акустической постоянной в помещении, м 2 .

  1. Точка расчёта берётся за пределами здания на близлежащей территории. Звук от работы распространяется через стенки вентшахт, решётки и корпус вентилятора. Условно принимается, что источник шума — точечный (расстояние от вентилятора до расчетной позиции на порядок больше, чем размер аппарата). Тогда октавный уровень шумового давления вычисляется по формуле 3:

Формула 3

где LPоктi — октавная мощность источника шума, дБ;
∆LPсетиi — потеря мощности звука при его распространение по воздуховоду, дБ;
∆Lнi — показатель направленности излучения звука, дБ;
r — длина отрезка от вентилятора до точки расчёта, м;
W — угол излучения звука в пространстве;
ba — снижение интенсивности шума в атмосфере, дБ/км.

Если на одну точку действует несколько источников шума, например, вентилятор и кондиционер, то методика вычислений немного меняется. Нельзя просто взять и сложить все источники, поэтому опытные проектировщики идут по другому пути, убирая все ненужные данные. Вычисляется разница между наибольшим и наименьшим по интенсивности источником, а полученное значение сравнивается с нормативным параметром и плюсуется к уровню наибольшего.

Снижение звуковой нагрузки от работы вентилятора

Существует комплекс мер, позволяющих нивелировать неприятные человеческому уху факторы шума от работы вентилятора:

  • Выбор оборудования. Профессиональный проектировщик, в отличие от дилетанта, всегда обращает внимание на шум от системы и подбирает вентиляторы, обеспечивающие нормативные параметры микроклимата, но, при этом, без большого запаса по мощности. На рынке представлен широкий ассортимент вентиляторов с глушителями, они хорошо защищают от неприятных звуков и вибраций.
  • Выбор места установки. Мощное вентиляционное оборудование монтируется только за пределами обслуживаемого помещения: это может быть крыша или специальная камера. Например, если поставить вентилятор на чердак в панельном доме, то жильцы на последнем этаже сразу почувствуют дискомфорт. Поэтому в таких случаях используются только крышные вентиляторы.
  • Подбор скорости движения воздуха по каналам. Проектировщики исходят из акустического расчёта. Например, для классического воздуховода 300×900 мм она не более 10 м/с.
  • Виброизоляция, звукоизоляция и экранирование. Виброизоляция предполагает установку специальных опор, которые гасят вибрации. Звукоизоляция осуществляется оклейкой корпусов специальным материалом. Экранирование включает в себя отсечение источника звука от здания или помещения с помощью щита.

Виброопора

Расчёт шума от вентиляционных систем предполагает нахождение таких технических решений, когда работа оборудования не будет мешать людям. Это сложная задача, требующая навыков и опыта в этой области.

Пример расчета

В компании «Мега.ру» давно занимаются вопросами вентилирования и создания оптимальных условий микроклимата. Наши специалисты решают проблемы любой сложности. Мы работаем в Москве и граничащих с ней регионах. Служба технической поддержки ответит на все вопросы по телефонам, указанным на странице «Контакты». Возможно удалённое сотрудничество. Обращайтесь!

Пример акустический расчет системы вентиляции. Новый метод акустического расчета системы вентиляции и кондиционирования воздуха зданий. Сбор необходимых исходных данных

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Вентиляционные системы шумят и вибрируют. Интенсивность и область распространения звуков зависит от места расположения основных агрегатов, протяжённости воздуховодов, общей производительности, а также типа здания и его функционального назначения. Расчёт шума от вентиляции призван подобрать механизмы работы и используемые материалы, при которых он не будет выходить за рамки нормативных значений, и входит в проект вентсистем, как один из пунктов.

Вентиляционные системы состоят из отдельных элементов, каждый из которых является источником неприятных звуков:

  • У вентилятора это может быть лопасть или двигатель. Лопасть шумит из-за резкого перепада давления с одной и другой стороны. Двигатель — из-за поломки или неправильной установки. Охлаждающие установки издают шум по тем же причинам, также добавляется неправильная работа компрессора.
  • Воздуховоды. Есть две причины: первая – вихревые образования из воздуха, ударяющиеся о стенки. Подробнее мы об этом говорили в статье . Вторая – гул в местах изменения сечения воздуховода. Проблемы решаются снижением скорости движения газа.
  • Строительные конструкции. Побочные шум от вибраций вентиляторов и других установок, передающиеся на элементы здания. Решение осуществляется за счет монтажа специальных опор или прокладок для гашения вибрации. Наглядный пример — кондиционер в квартире: если внешний блок закреплен не во всех точках, или монтажники забыли поставить защитные прокладки, то его работа может доставлять акустический дискомфорт у хозяев установки или их соседей.

Способы передачи

Существует три пути распространения звука, и, чтобы рассчитать звуковую нагрузку, надо знать, как именно он передаётся всеми тремя способами:

  • Воздушный: шум от работающих установок. Распространяется как внутри, так и снаружи здания. Основной источник нагрузки для людей. Например, крупный магазин, кондиционеры и холодильные установки у которого расположены с тыльной части здания. Звуковые волны распространяются во все стороны до близлежащих домов.
  • Гидравлический: источник шума — трубы с жидкостью. Звуковые волны передаются на большие расстояния по всему зданию. Вызывается изменением размера сечения трубопровода и нарушением работы компрессора.
  • Вибрационный: источник — строительные конструкции. Вызывается неправильной установкой вентиляторов или других частей системы. Передаётся по всему зданию и за его пределы.

Некоторые специалисты в расчётах используют научные изыскания из других стран. Например, есть формула, опубликованная в немецком журнале: с её помощью рассчитывается генерация звука стенками воздуховода, в зависимости от скорости движения потока воздуха.

Способ замера

Часто требуется замерить допустимый уровень шума или интенсивность вибраций в уже смонтированных, работающих системах вентиляции. Классический способ измерения подразумевает использование специального прибора «шумомера»: он определяет силу распространения звуковых волн. Замер ведётся с использованием трёх фильтров, позволяющих отсекать ненужные звуки за границей исследуемой зоны. Первый фильтр – замеряет звук, интенсивность которого не превышает 50 дБ. Второй – от 50 до 85 дБ. Третий – свыше 80 дБ.

Вибрации измеряются в Герцах (Гц) для нескольких точек. Например, в непосредственной близости от источника шума, затем на определенном расстоянии, после этого — в самой отдалённой точке.

Нормы и правила

Правила расчёта шума от работы вентиляции и алгоритмы выполнения вычислений указаны в СНиП 23-03-2003 «Защита от шума»; ГОСТ 12.1.023-80 «Система стандартов безопасности труда (ССБТ). Шум. Методы установления значений шумовых характеристик стационарных машин».

При определении звуковой нагрузки около зданий необходимо помнить, что нормативные значения даны для интервально-работающей механической вентиляции и открытых окнах. Если берутся в расчёт закрытые окна и принудительная система воздухообмена, способная обеспечить проектную кратность, то в качестве норм используются другие параметры. Предельный уровень шума вокруг здания повышается до границы, позволяющей сохранить нормативные параметры внутри помещения.

Требования по уровню звуковой нагрузки для жилы и общественных зданий зависят от их категории:

  1. А – наилучшие условия.
  2. Б — комфортная среда.
  3. В – уровень шума на границе предельного.

Акустический расчёт

Применяется проектировщиками для определения шумопоглащения. Основная задача акустического расчета – вычислить актавный спектр звуковых нагрузок во всех точках, определённых заранее, а полученное значение сравнить с нормативным, максимально допустимыми. При необходимост снизить до установленных стандартов.

Расчёт выполняется по шумовым характеристикам ветиляционного оборудования, они должны указываться в технической документации.

  • непосредственное место установки оборудования;
  • соседние помещения;
  • все помещения, где работает вентсистема, включая подвальные;
  • комнаты транзитного приложения воздушных каналов;
  • места впуска приточки или выпуска вытяжки.

Акустический расчёт выполнятся по двум основным формулам, выбор которых зависит от места расположения точки.

  1. Точка расчёта берётся внутри здания, в непосредственно близости от вентилятора. Звуковое давление зависит от мощности и количества вентиляторов, направленности волн и других параметров. Формула 1 для определения октавных уровней звукового давления от одного или нескольких вентиляторов выглядит так:

где L Pi — мощность звука в каждой октаве;
∆L помi — уменьшение интенсивности шумовой нагрузки, связанное с разнонаправленным движением звуковых волн и потерями мощности от распространения в воздушной среде;

По формуле 2 определяется ∆L помi:

где Фi — безразмерный фактор вектора распространения волн;
S -площадь сферы или полусферы, которая захватывает вентилятор и точку расчёта, м 2 ;
B — неизменное значение акустической постоянной в помещении, м 2 .

  1. Точка расчёта берётся за пределами здания на близлежащей территории. Звук от работы распространяется через стенки вентшахт, решётки и корпус вентилятора. Условно принимается, что источник шума — точечный (расстояние от вентилятора до расчетной позиции на порядок больше, чем размер аппарата). Тогда октавный уровень шумового давления вычисляется по формуле 3:

где L Pоктi — октавная мощность источника шума, дБ;
∆L Pсетиi — потеря мощности звука при его распространение по воздуховоду, дБ;
∆L нi — показатель направленности излучения звука, дБ;
r — длина отрезка от вентилятора до точки расчёта, м;
W — угол излучения звука в пространстве;
b a — снижение интенсивности шума в атмосфере, дБ/км.

Если на одну точку действует несколько источников шума, например, вентилятор и кондиционер, то методика вычислений немного меняется. Нельзя просто взять и сложить все источники, поэтому опытные проектировщики идут по другому пути, убирая все ненужные данные. Вычисляется разница между наибольшим и наименьшим по интенсивности источником, а полученное значение сравнивается с нормативным параметром и плюсуется к уровню наибольшего.

Снижение звуковой нагрузки от работы вентилятора

Существует комплекс мер, позволяющих нивелировать неприятные человеческому уху факторы шума от работы вентилятора:

  • Выбор оборудования. Профессиональный проектировщик, в отличие от дилетанта, всегда обращает внимание на шум от системы и подбирает вентиляторы, обеспечивающие нормативные параметры микроклимата, но, при этом, без большого запаса по мощности. На рынке представлен широкий ассортимент вентиляторов с глушителями, они хорошо защищают от неприятных звуков и вибраций.
  • Выбор места установки. Мощное вентиляционное оборудование монтируется только за пределами обслуживаемого помещения: это может быть крыша или специальная камера. Например, если поставить вентилятор на чердак в панельном доме, то жильцы на последнем этаже сразу почувствуют дискомфорт. Поэтому в таких случаях используются только крышные вентиляторы.
  • Подбор скорости движения воздуха по каналам. Проектировщики исходят из акустического расчёта. Например, для классического воздуховода 300×900 мм она не более 10 м/с.
  • Виброизоляция, звукоизоляция и экранирование. Виброизоляция предполагает установку специальных опор, которые гасят вибрации. Звукоизоляция осуществляется оклейкой корпусов специальным материалом. Экранирование включает в себя отсечение источника звука от здания или помещения с помощью щита.

Расчёт шума от вентиляционных систем предполагает нахождение таких технических решений, когда работа оборудования не будет мешать людям. Это сложная задача, требующая навыков и опыта в этой области.

В компании «Мега.ру» давно занимаются вопросами вентилирования и создания оптимальных условий микроклимата. Наши специалисты решают проблемы любой сложности. Мы работаем в Москве и граничащих с ней регионах. Служба технической поддержки ответит на все вопросы по телефонам, указанным на странице . Возможно удалённое сотрудничество. Обращайтесь!

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механиче­ский шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Для вентилятора характерно существование трех независимых путей распространения шума: по воздуховодам на всасывании, по воздуховодам на нагнетании, через стенки кожуха в окружающее пространство. В при­точных системах наиболее опасным является распространение шума в сторону нагнетания, в вытяжных — в сторону всасывания. Уровни звуко­вого давления по этим направлениям, измеренные в соответствии со стандартами, указываются в паспортных данных и каталогах вентиляци­онного оборудования.

Для уменьшения шума и вибрации проводится ряд предупредительных мер: тщательная балансировка рабочего колеса вентилятора; применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД); крепление вентиляторных агрегатов на виброоснова­ниях; присоединение вентиляторов к воздуховодам с помощью гибких вставок; обеспечение допустимых скоростей движения воздуха в воздухо­водах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума в вентилируемых помещениях применяют специальные шумоглушители.

Шумоглушители бывают трубчатые, пластинчатые и камерного типа.

Трубчатые глушители выполняются в виде прямого участка металли­ческого воздуховода круглого или прямоугольного сечения, облицованного изнутри звукопоглощающим материалом, применяются при площади сече­ния воздуховодов до 0,25 м 2 .

При больших сечениях применяются пластинчатые глушители, основ­ным элементом которых является звукопоглощающая пластина — металли­ческая перфорированная по бокам коробка, заполненная звукопоглощаю­щим материалом. Пластины устанавливаются в прямоугольном кожухе.

Шумоглушители обычно устанавливаются в приточных механических системах вентиляции общественных зданий со стороны нагнетания, в вы­тяжных системах — со стороны всасывания. Необходимость установки шу­моглушителей определяется на основании акустического расчета вентиля­ционной системы. Смысл акустического расчета:

1) устанавливается допустимый уровень звукового давления для дан­ного помещения;

2) определяется уровень звуковой мощности вентилятора;

3) определяется снижение уровня звукового давления в вентиляцион­ной сети (на прямых участках воздуховодов, в тройниках и т.п.);

4) определяется уровень звукового давления в расчетной точке поме­щения, ближе всего расположенного к вентилятору со стороны нагнетания для приточной системы и со стороны всасывания — для вытяжной системы;

5) сравнивается уровень звукового давления в расчетной точке поме­щения с допустимым уровнем;

6) в случае превышения подбирается шумоглушитель необходимой конструкции и длины, определяется аэродинамическое сопротивление глу­шителя.

СНиП устанавливает допустимые уровни звукового давления, дБ, для различных помещений по среднегеометрическим частотам: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Наиболее интенсивно шум вентилятора про­является в низких октавных полосах (до 300 Гц), поэтому в курсовом про­екте акустический расчет производится в октавных полосах 125, 250 Гц.

В курсовом проекте необходимо произвести акустический расчет приточной системы вентиляции центра долголетия и подобрать шумоглушитель. Ближайшее помещение со стороны нагнетания вентилятора – комната наблюдения(дежурный) размером 3,7×4,1×3 (h) м, объемом 45,5 м 3 , воздух поступает через жалюзийную решетку типа Р150 размером 150×150 мм. Скорость выхода воздуха не превышает 3 м/с. Воздух из решетки выходит параллельно потолку (угол Θ = 0°). В приточной камере установлен радиальный вентилятор ВЦ4 75-4 с параметрами: производи­тельность L = 2170 м 3 /ч, развиваемое давление Р = 315,1 Па, частота вращения n= =1390 об/мин. Диаметр колеса вентилятора D=0,9 ·D ном.

Схема расчетной ветви воздуховодов представлена на рис. 13.1а

1) Устанавливаем допустимый уровень звукового давления для данного помещения .

2) Определяем октановый уровень звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, дБ, по формуле:

Так как расчет мы выполняем для двух октановых полос, то удобно пользоваться таблицей. Результаты расчета октавного уровня звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, заносим в табл. 13.1.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет — обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Исходными данными для акустического расчета являются шумовые характеристики оборудования — уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов могут использоваться корректированные уровни звуковой мощности источников шума в дБА.

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi — фактор направленности источника шума (безразмерный);

S — площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B — акустическая постоянная помещения, м 2 .

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

где L Pоктi — октавный уровень звуковой мощности источника шума, дБ;

∆L Pсетиi — суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

∆L нi — показатель направленности излучения звука, дБ;

r — расстояние от источника шума до расчетной точки, м;

W — пространственный угол излучения звука;

b a — затухание звука в атмосфере, дБ/км.

Система вентиляции и кондиционирования воздуха (СВКВ) является одним из основных источников шума в современных жилых, общественных и промышленных зданиях, на судах, в спальных вагонах поездов, во всевозможных салонах и кабинах управления.

Шум в СВКВ идет от вентилятора (главного источника шума со своими задачами ) и других источников, распространяется по воздуховоду вместе с потоком воздуха и излучается в вентилируемое помещение. На шум и его снижение влияют: кондиционеры, отопительные агрегаты, регулирующие и воздухораспределительные устройства, конструкция, повороты и разветвление воздуховодов .

Акустический расчет СВКВ производится с целью оптимального выбора всех необходимых средств снижения шума и определения ожидаемого уровня шума в расчетных точках помещения. Традиционно главным средством снижения шума системы являются активные и реактивные глушители шума . Звукоизоляцией и звукопоглощением системы и помещения требуется обеспечить выполнение норм допустимых для человека уровней шума — важных экологических норм.

Сейчас в строительных нормах и правилах России (СНиП), обязательных при проектировании, строительстве и эксплуатации зданий с целью защиты людей от шума, сложилась чрезвычайная ситуация. В старом СНиП II-12-77 «Защита от шума» метод акустического расчета СВКВ зданий устарел и не вошел поэтому в новый СНиП 23-03-2003 «Защита от шума» (взамен СНиП II-12-77), где он пока вообще отсутствует.

Таким образом, старый метод устарел, а нового нет . Настает пора создания современного метода акустического расчета СВКВ в зданиях, как это уже имеет место быть со своей спецификой в других, ранее более продвинутых по акустике, областях техники, например, на морских судах . Рассмотрим три возможных способа акустического расчета, применительно к СВКВ.

Первый способ акустического расчета . В этом способе, устанавливаемого сугубо на аналитических зависимостях, используется теория длинных линий, известная в электротехнике и отнесенная здесь к распространению звука в газе, заполняющем узкую трубу с жесткими стенками . Расчет производится при условии, что поперечник трубы много меньше длины звуковой волны.

Для трубы прямоугольного сечения сторона должна быть меньше половины длины волны, а для круглой трубы — радиус. Именно такие трубы в акустике называются узкими. Так, для воздуха на частоте 100 Гц труба прямоугольного сечения будет считаться узкой, если сторона сечения меньше 1,65 м. В узкой изогнутой трубе распространение звука останется таким же, как и в прямой трубе.

Это известно из практики применения переговорных труб, например, давно на пароходах. Типовая схема длинной линии системы вентиляции имеет две определяющие величины: L wH — звуковая мощность, поступающая в трубопровод нагнетания от вентилятора в начале длинной линии, а L wK — звуковая мощность, исходящая из трубопровода нагнетания в конце длинной линии и поступающая в вентилируемое помещение.

Длинная линия содержит следующие характерные элементы. Перечислим их: входное отверстие со звукоизоляцией R 1 , активный глушитель шума со звукоизоляцией R 2 , тройник со звукоизоляцией R 3 , реактивный глушитель шума со звукоизоляцией R 4 , дроссельная заслонка со звукоизоляцией R 5 и выпускное отверстие со звукоизоляцией R 6 . Под звукоизоляцией здесь понимается разность в дБ между звуковой мощностью в падающих на данный элемент волнах и звуковой мощности, излучаемой этим элементом после прохождения волн через него далее .

Если звукоизоляция каждого из этих элементов не зависит от всех других, то звукоизоляция всей системы может быть оценена расчетом следующим образом. Волновое уравнение для узкой трубы имеет следующий вид уравнения для плоских звуковых волн в неограниченной среде:

где c — скорость звука в воздухе, а p — звуковое давление в трубе, связанное с колебательной скоростью в трубе по второму закону Ньютона соотношением

где ρ— плотность воздуха. Звуковая мощность для плоских гармонических волн равна интегралу по площади поперечного сечения S воздуховода за период звуковых колебаний T в Вт:

где T = 1/f — период звуковых колебаний, с; f — частота колебаний, Гц. Звуковая мощность в дБ: L w = 10lg(N/N 0), где N 0 = 10 -12 Вт. В пределах указанных допущений звукоизоляция длинной линии системы вентиляции рассчитывается по следующей формуле:

Число элементов n для конкретной СВКВ может быть, конечно, больше указанных выше n = 6. Применим для расчета величин R i теорию длинных линий к вышеуказанным характерным элементам системы вентиляции воздуха.

Входное и выходное отверстия системы вентиляции с R 1 и R 6 . Место соединения двух узких труб с разными площадями поперечных сечений S 1 и S 2 по теории длинных линий — аналог границы раздела двух сред при нормальном падении звуковых волн на границу раздела. Граничные условия в месте соединения двух труб определяются равенством звуковых давлений и колебательных скоростей по обе стороны границы соединения, умноженных на площади поперечных сечений труб.

Решая полученные таким способом уравнения, получим коэффициент прохождения по энергии и звукоизоляцию места соединения двух труб с указанными выше сечениями:

Анализ этой формулы показывает, что при S 2 >> S 1 свойства второй трубы приближаются к свойствам свободной границы. Например, узкую трубу, открытую в полубесконечное пространство, можно считать с точки зрения звукоизолирующего эффекта как граничащую с вакуумом. При S 1 S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 — площадь технического помещения над изолируемым помещением, м 2 ;

S u — площадь изолируемого помещения, м 2 ;

S в — общая площадь технического помещения, м 2 ;

R — собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n — общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора — количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, — количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, — количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет — не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.

Использование керамической плитки является основным способом отделки ванных комнат. Это обусловлено высокими технико-эксплуатационными качествами этого материала. Но не последнюю роль играет подбор.
Невероятно красивые варианты раскладки плитки в ванной: схемы и советы от профессионалов!

Пример акустического расчета системы вентиляции офиса. Расчет уровня шума. Целями акустического расчета являются

Акустический расчет производят для каждой из восьми октавных полос слухового диапазона (для которых нормируются уровни шума) со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

Для центральных систем вентиляции и кондиционирования воздуха с разветвленными сетями воздуховодов допускается осуществлять акустический расчет только для частот 125 и 250 Гц. Все расчеты выполняют с точностью до 0,5 Гц и округлением конечного результата до целого числа децибел.

При работе вентилятора в режимах КПД большего или равного 0,9 КПД максимума 6 = 0. При отклонении режима работы вентилятора не более 20% максимума КПД принимают 6=2 дБ, а при отклонении более чем на 20% — 4 дБ.

Рекомендуется для снижения уровня звуковой мощности, генерируемой в воздуховодах, принимать следующие максимальные скорости движения воздуха: в магистральных воздуховодах общественных зданий и вспомогательных помещений промышленных зданий 5-6 м/с, а в ответвлениях — 2-4 м/с. Для промышленных зданий эти скорости можно увеличивать в 2 раза.

Для систем вентиляции с разветвленной сетью воздуховодов акустический расчет делают только для ветви к ближайшему помещению (при одинаковых допускаемых уровнях шума), при разных уровнях шума — для ветви с наименьшим допускаемым уровнем. Акустический расчет для воздухоприемных и выбросных шахт делают отдельно.

Для централизованных систем вентиляции и кондиционирования воздуха с разветвленной сетью воздуховодов расчет можно делать только для частот 125 и 250 Гц.

При поступлении шума в помещение от нескольких источников (из приточных и вытяжных решеток, от агрегатов, местных кондиционеров н др.) выбирают несколько расчетных точек на рабочих местах, ближайших к источникам шума. Для этих точек определяют октавные уровни звукового давления от каждого источника шума в отдельности.

При различных в течение суток нормативных требованиях к уровням звукового давления акустический расчет выполняют на наиболее низкие допустимые уровни.

В общем числе источников шума т не учитывают источники, создающие в расчетной точке октавные уровни на 10 и 15 дБ ниже нормативных, при числе их соответственно не более 3 и 10. Не учитывают также дросселирующие устройства у вентиляторов.

Несколько равномерно распределенных по помещению приточных или вытяжных решеток от одного вентилятора можно рассматривать как один источник шума при проникании через них шума от одного вентилятора.

При расположении в помещении нескольких источников одинаковой звуковой мощности уровни звукового давления в выбранной расчетной точке определяют по формуле

Инженерно-строительный журнал, N 5, 2010 год
Рубрика: Технологии

Д.т.н., профессор И.И.Боголепов

ГОУ Санкт-Петербургский государственный политехнический университет
и ГОУ Санкт-Петербургский государственный морской технический университет;
магистр А.А.Гладких,
ГОУ Санкт-Петербургский государственный политехнический университет


Система вентиляции и кондиционирования воздуха (СВКВ) — важнейшая система для современных зданий и сооружений. Однако, кроме необходимого качественного воздуха, система транспортирует в помещения шум. Он идет от вентилятора и других источников, распространяется по воздуховоду и излучается в вентилируемое помещение. Шум несовместим с нормальным сном, учебным процессом, творческой работой, высокопроизводительным трудом, полноценным отдыхом, лечением, получением качественной информации . В строительных нормах и правилах России сложилась такая ситуация. Метод акустического расчета СВКВ зданий, использовавшийся в старом СНиПе II-12-77 «Защита от шума » , устарел и не вошел поэтому в новый СНиП 23-03-2003 «Защита от шума » . Итак, старый метод устарел, а нового общепризнанного пока нет . Ниже предлагается простой приближенный способ акустического расчета СВКВ в современных зданиях, разработанный с использованием лучшего производственного опыта, в частности, на морских судах .

Предлагаемый акустический расчет основан на теории длинных линий распространения звука в акустически узкой трубе и на теории звука помещений с практически диффузным звуковым полем . Он выполняется с целью оценки уровней звукового давления (далее — УЗД) и соответствия их значений действующим нормам допустимого шума . Он предусматривает определение УЗД от СВКВ вследствие работы вентилятора (далее — «машина») для следующих типовых групп помещений:

1) в помещении, где расположена машина;

2) в помещениях, через которые воздуховоды проходят транзитом;

3) в помещениях, обслуживаемых системой.

Исходные данные и требования

Расчет, проектирование и контроль защиты людей от шума предлагается выполнять для наиболее важных для человеческого восприятия октавных полос частот, а именно: 125 Гц, 500 Гц и 2000 Гц. Октавная полоса частот 500 Гц является среднегеометрической величиной в диапазоне нормируемых по шуму октавных полос частот 31,5 Гц — 8000 Гц . Для постоянного шума расчет предусматривает определение УЗД в октавных полосах частот по уровням звуковой мощности (УЗМ) в системе. Величины УЗД и УЗМ связаны общим соотношением = — 10, где — УЗД относительно порогового значения 2·10 Н/м; — УЗМ относительно порогового значения 10 Вт; — площадь распространения фронта звуковых волн, м.

УЗД должны определяться в расчетных точках нормируемых по шуму помещений по формуле = + , где — УЗМ источника шума. Величина , учитывающая влияние помещения на шум в нем, рассчитывается по формуле:

где — коэффициент, учитывающий влияние ближнего поля; — пространственный угол излучения источника шума, рад.; — коэффициент направленности излучения, принимается по экспериментальным данным (в первом приближении равен единице); — расстояние от центра излучателя шума до расчетной точки в м; = — акустическая постоянная помещения, м; — средний коэффициент звукопоглощения внутренних поверхностей помещения; — суммарная площадь этих поверхностей, м; — коэффициент, учитывающий нарушение диффузного звукового поля в помещении.

Указанные величины, расчетные точки и нормы допустимого шума регламентируются для помещений различных зданий СНиПом 23-03-2003 «Защита от шума » . Если расчетные значения УЗД превосходят норму допустимого шума хотя бы в одной из указанных трех полос частот, то необходимо спроектировать мероприятия и средства снижения шума.

Исходными данными для акустического расчета и проектирования СВКВ являются:

— компоновочные схемы, применяемые в конструкции сооружения; размеры машин, воздуховодов, регулирующей арматуры, колен, тройников и воздухораспределителей;

— скорости движения воздуха в магистралях и ответвлениях — по данным технического задания и аэродинамического расчета;

— чертежи общего расположения помещений, обслуживаемых СВКВ — по данным строительного проекта сооружения;

— шумовые характеристики машин, регулирующей арматуры и воздухораспределителей СВКВ — по данным технической документации на эти изделия.

Шумовыми характеристиками машины являются следующие уровни УЗМ воздушного шума в октавных полосах частот в дБ: — УЗМ шума, распространяющегося от машины в воздуховод всасывания; — УЗМ шума, распространяющегося от машины в воздуховод нагнетания; — УЗМ шума, излучаемого корпусом машины в окружающее пространство. Все шумовые характеристики машины определяются в настоящее время на основании акустических измерений по соответствующим национальным или международным стандартам и другим нормативным документам .

Шумовые характеристики глушителей, воздуховодов, регулируемой арматуры и воздухораспределителей представлены УЗМ воздушного шума в октавных полосах частот в дБ:

— УЗМ шума, генерируемого элементами системы при прохождении потока воздуха через них (генерация шума); — УЗМ шума, рассеиваемого или поглощаемого в элементах системы при прохождении через них потока звуковой энергии (снижение шума).

Эффективность генерации и снижения шума элементами СВКВ определяются на основании акустических измерений. Подчеркнем, что значения величин и должны быть указаны в соответствующей технической документации.

Должное внимание уделяется при этом точности и надежности акустического расчета, которые закладываются в погрешность результата величинами и .

Расчет для помещений, где установлена машина

Пусть в помещении 1, где установлена машина, имеется вентилятор, уровень звуковой мощности которого, излучаемый в трубопровод всасывания, нагнетания и через корпус машины, есть величины в дБ , и . Пусть у вентилятора на стороне трубопровода нагнетания установлен глушитель шума с эффективностью глушения в дБ (). Рабочее место находится на расстоянии от машины. Разделяющее помещение 1 и помещение 2 стена находится на расстоянии от машины. Постоянная звукопоглощения помещения 1: = .

Для помещения 1 расчет предусматривает решение трех задач.

1-я задача . Выполнение нормы допустимого шума .

Если всасывающий и нагнетательный патрубки выведены из помещения машины, то расчет УЗД в помещении, где она расположена, производится по следующим формулам.

Октавные УЗД в расчетной точке помещения определяются в дБ по формуле:

где — УЗМ шума, излучаемого корпусом машины с учетом точности и надежности с помощью . Величина , указанная выше, определяется по формуле:

Если в помещении размещены n источников шума, УЗД от каждого из которых в расчетной точке равны , то суммарный УЗД от всех их определяется по формуле:

В результате акустического расчета и проектирования СВКВ для помещения 1, где установлена машина, должно быть обеспечено выполнение в расчетных точках норм допустимого шума .

2-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 1 в помещение 2 (помещение, через который воздуховод проходит транзитом), а именно величины в дБ производится по формуле

3-я задача. Расчет величины УЗМ, излучаемой стенкой площадью со звукоизоляцией помещения 1 в помещение 2, а именно величины в дБ, выполняется по формуле

Таким образом, результатом расчета в помещении 1 является выполнение норм по шуму в этом помещении и получение исходных данных для расчета в помещении 2.

Расчет для помещений, через которые воздуховод проходит транзитом

Для помещения 2 (для помещений, через которые воздуховод проходит транзитом) расчет предусматривает решение следующих пяти задач.

1-я задача. Расчет звуковой мощности, излучаемой стенками воздуховода в помещение 2, а именно определение величины в дБ по формуле:

В этой формуле: — см. выше 2-ю задачу для помещения 1;

=1,12 — эквивалентный диаметр сечения воздуховода с площадью поперечного сечения ;

— длина помещения 2.

Звукоизоляция стенок цилиндрического воздуховода в дБ рассчитывается по формуле:

где — динамический модуль упругости материала стенки воздуховода, Н/м;

— внутренний диаметр воздуховода в м;

— толщина стенки воздуховода в м;

Звукоизоляция стенок воздуховодов прямоугольного сечения рассчитывается по следующей формуле в ДБ:

где = — масса единицы поверхности стенки воздуховода (произведение плотности материала в кг/м на толщину стенки в м);

— среднегеометрическая частота октавных полос в Гц.

2-я задача. Расчет УЗД в расчетной точке помещения 2, находящейся на расстоянии от первого источника шума (воздуховод) выполняется по формуле, дБ:

3-я задача. Расчет УЗД в расчетной точке помещения 2 от второго источника шума (УЗМ, излучаемой стеной помещения 1 в помещение 2, — величина в дБ) выполняется по формуле, дБ:

4-я задача. Выполнение нормы допустимого шума .

Расчет ведется по формуле в дБ:

В результате акустического расчета и проектирования СВКВ для помещения 2, через которое воздуховод проходит транзитом, должно быть обеспечено выполнение в расчетных точках норм допустимого шума . Это первый результат.

5-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 2 в помещение 3 (помещение, обслуживаемое системой), а именно величины в дБ по формуле:

Величина потерь на излучение звуковой мощности шума стенками воздуховодов на прямолинейных участках воздуховодов единичной длины в дБ/м представлена в таблице 2. Вторым результатом расчета в помещении 2 является получение исходных данных для акустического расчета системы вентиляции в помещении 3.

Расчет для помещений, обслуживаемых системой

В помещениях 3, обслуживаемых СВКВ (для которых система в конечном счете и предназначена), расчетные точки и нормы допустимого шума принимаются в соответствии со СНиП 23-03-2003 «Защита от шума » и техническим заданием.

Для помещения 3 расчет предусматривает решение двух задач.

1-я задача. Расчет звуковой мощности, излучаемой воздуховодом через выпускное воздухораспределительное отверстие в помещение 3, а именно определение величины в дБ, предлагается выполнять следующим образом.

Частная задача 1 для низкоскоростной системы со скоростью воздуха v > S 1 свойства второй трубы приближаются к свойствам свободной границы. Например, узкую трубу, открытую в полубесконечное пространство, можно считать с точки зрения звукоизолирующего эффекта как граничащую с вакуумом. При S 1

Новый метод акустического расчета системы вентиляции и кондиционирования воздуха зданий. Акустический расчет приточной системы вентиляции

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механиче­ский шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Для вентилятора характерно существование трех независимых путей распространения шума: по воздуховодам на всасывании, по воздуховодам на нагнетании, через стенки кожуха в окружающее пространство. В при­точных системах наиболее опасным является распространение шума в сторону нагнетания, в вытяжных — в сторону всасывания. Уровни звуко­вого давления по этим направлениям, измеренные в соответствии со стандартами, указываются в паспортных данных и каталогах вентиляци­онного оборудования.

Для уменьшения шума и вибрации проводится ряд предупредительных мер: тщательная балансировка рабочего колеса вентилятора; применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД); крепление вентиляторных агрегатов на виброоснова­ниях; присоединение вентиляторов к воздуховодам с помощью гибких вставок; обеспечение допустимых скоростей движения воздуха в воздухо­водах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума в вентилируемых помещениях применяют специальные шумоглушители.

Шумоглушители бывают трубчатые, пластинчатые и камерного типа.

Трубчатые глушители выполняются в виде прямого участка металли­ческого воздуховода круглого или прямоугольного сечения, облицованного изнутри звукопоглощающим материалом, применяются при площади сече­ния воздуховодов до 0,25 м 2 .

При больших сечениях применяются пластинчатые глушители, основ­ным элементом которых является звукопоглощающая пластина — металли­ческая перфорированная по бокам коробка, заполненная звукопоглощаю­щим материалом. Пластины устанавливаются в прямоугольном кожухе.

Шумоглушители обычно устанавливаются в приточных механических системах вентиляции общественных зданий со стороны нагнетания, в вы­тяжных системах — со стороны всасывания. Необходимость установки шу­моглушителей определяется на основании акустического расчета вентиля­ционной системы. Смысл акустического расчета:

1) устанавливается допустимый уровень звукового давления для дан­ного помещения;

2) определяется уровень звуковой мощности вентилятора;

3) определяется снижение уровня звукового давления в вентиляцион­ной сети (на прямых участках воздуховодов, в тройниках и т.п.);

4) определяется уровень звукового давления в расчетной точке поме­щения, ближе всего расположенного к вентилятору со стороны нагнетания для приточной системы и со стороны всасывания — для вытяжной системы;

5) сравнивается уровень звукового давления в расчетной точке поме­щения с допустимым уровнем;

6) в случае превышения подбирается шумоглушитель необходимой конструкции и длины, определяется аэродинамическое сопротивление глу­шителя.

СНиП устанавливает допустимые уровни звукового давления, дБ, для различных помещений по среднегеометрическим частотам: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Наиболее интенсивно шум вентилятора про­является в низких октавных полосах (до 300 Гц), поэтому в курсовом про­екте акустический расчет производится в октавных полосах 125, 250 Гц.

В курсовом проекте необходимо произвести акустический расчет приточной системы вентиляции центра долголетия и подобрать шумоглушитель. Ближайшее помещение со стороны нагнетания вентилятора – комната наблюдения(дежурный) размером 3,7×4,1×3 (h) м, объемом 45,5 м 3 , воздух поступает через жалюзийную решетку типа Р150 размером 150×150 мм. Скорость выхода воздуха не превышает 3 м/с. Воздух из решетки выходит параллельно потолку (угол Θ = 0°). В приточной камере установлен радиальный вентилятор ВЦ4 75-4 с параметрами: производи­тельность L = 2170 м 3 /ч, развиваемое давление Р = 315,1 Па, частота вращения n= =1390 об/мин. Диаметр колеса вентилятора D=0,9 ·D ном.

Схема расчетной ветви воздуховодов представлена на рис. 13.1а

1) Устанавливаем допустимый уровень звукового давления для данного помещения .

2) Определяем октановый уровень звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, дБ, по формуле:

Так как расчет мы выполняем для двух октановых полос, то удобно пользоваться таблицей. Результаты расчета октавного уровня звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, заносим в табл. 13.1.

3) Определяем снижение звуковой мощности в элементах вентиляционной сети, дБ:

где — сумма снижений уровня звукового давления в различных элементах сети воздуховода до входа в расчетное помещение.

3.1. Снижение уровня звуковой мощности на участках металлического воздуховода круглого сечения:

Значение снижения уровня звуковой мощности в металлических воздуховодах круглого сечения принимаем по

3.2. Снижение уровня звуковой мощности в плавных поворотах воздуховодов, определяем по . При плавном повороте шириной 125-500 мм – 0 дБ.

3.3. Снижение октановых уровней звуковой мощности в разветвлении, дБ:

где m n – отношение площадей сечений воздуховодов ;

Площадь сечения воздуховода ответвления, м 2 ;

Площадь сечения воздуховода перед ответвлением, м 2 ;

Суммарная площадь поперечных сечений воздуховодов ответвлений, м 2 .

Узлы разветвлений для вентиляционной системы (рис. 13.1а) показаны на рисунках 13.1, 13.2,13.3,13.4

Расчет для полос 125 Гц и 250 Гц.

Для тройника — поворота (узел 1):

Для тройника – поворота (узел 2):

Для тройника – поворота (узел 3):

Для тройника – поворота (узел 4):

3.4. Потери звуковой мощности в результате отражения звука от приточной решетки Р150 для частоты 125 Гц — 15 дБ, 250 Гц – 9дБ .

Суммарное снижение уровня звуковой мощности в вентиляционной сети до расчетного помещения

В октановой полосе 125 Гц:

В октановой полосе 250 Гц:

4)Определяем октановые уровни звукового давления в расчетной точке помещения. При объеме помещения до 120 м 3 и при расположении расчетной точки не менее чем на 2м от решетки средний по помещению октановый уровень звукового давления в помещении, дБ,можно определять:

В – постоянная помещения, м 2 .

Постоянную помещения в октановых полосах частот следует определять по формуле

Так как октавный уровень звуковой мощности в расчетной точке помещения меньше допустимого(для среднегеометрической частоты 125 48,5 > S 1 свойства второй трубы приближаются к свойствам свободной границы. Например, узкую трубу, открытую в полубесконечное пространство, можно считать с точки зрения звукоизолирующего эффекта как граничащую с вакуумом. При S 1

где f — частота в гц;

D — средний поперечный размер воздуховода (эквивалентный диаметр) в м; v — средняя скорость на входе в рассматриваемый элемент в м/сек.

Поправки AL) для определения октавных уровней звуковой мощности шума дросселирующих устройств в дб

Частотный параметр f

Примечание Промежуточные значения в табл 5 следует принимать по интерполяции

2.11. Октавные уровни звуковой мощности шума, создаваемого в плафонах и решетках, следует рассчитывать по формуле (2), принимая поправки ALi по данным табл. 6.

2.12. Если скорость движения воздуха перед воздухо-распределительным или воздухозаборным устройством (плафон, решетка и т. п.) не превышает допускаемой величины о доп, то создаваемый в них шум прн расчете

Поправки ALi, учитывающие распределение звуковой мощности шума плафонов н решеток по октавным полосам, в дб

Плафон ВНИИГС (отрывная

Плафон ВНИИГС (настильная

необходимого снижения уровней звукового давления (см. раздел 5) можно не учитывать

2.13. Допускаемую скорость движения воздуха перед воздухораспределительным или воздухозаборным устройством установок следует определять по формуле

у Д оп = 0,7 10* м/сек;

где Ь доп — допустимый по нормам октавный уровень звукового давления в дб; п — число плафонов или решеток в рассматриваемом помещении;

В — постоянная помещения в рассматриваемой октавной полосе в м 2 , принимаемая в соответствии с пп. 3.4 или 3.5;

AZ-i — поправка, учитывающая распределение уровней звуковой мощности плафонов и решеток по октавным полосам, принимаемая по табл. 6, в дб;

Д — поправка на расположение источника шума; при расположении источника в рабочей зоне (не выше 2 м от пола), А = 3 дб; если источник выше этой зоны, А *■ 0;

0,7 — коэффициент запаса;

F, Б — обозначения те же, что и в п. 2.9, формула (5).

Примечание. Определение допускаемой скорости движения воздуха производится только для одной частоты, которая равна для плафонов ВНИИГС 250 Щ, для дисковых плафонов 500 гц, для анемостатов и решеток 2000 гц.

2.14. В целях снижения уровня звуковой мощности шума, генерируемого поворотами и тройниками воздуховодов, участков резкого изменения площади поперечного сечения и т. п., следует ограничивать скорости движения воздуха в магистральных воздуховодах общественных зданий и вспомогательных зданий промышленных предприятий до 5-6 м/сек, а на ответвлениях до 2-4 м/сек. Для производственных здании эти скорости можно соответственно увеличивать в два раза, если по технологическим и другим требованиям это допустимо.

3. РАСЧЕТ ОКТАВНЫХ УРОВНЕЙ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНЫХ ТОЧКАХ

3.1. Октавные уровни звукового давления на постоянных рабочих местах или в помещениях (в расчетных точках) не должны превышать установленных нормами.

(П р им е ч а ни я: 1. Если нормативные требования к уровням звукового давления различны в течение суток, то акустический расчет установок следует производить на наиболее низкие допустимые уровни звукового давления.

2. Уровни звукового давления на постоянных рабочих местах или в помещениях (в расчетных точках) зависят от звуковой мощности и расположения источников шума и звукопоглощающих качеств рассматриваемого помещения.

3.2. При определении октавных уровней звукового давления расчет следует производить для постоянных рабочих мест или расчетных точек в помещениях, наиболее близко расположенных к источникам шума (отопительно-вентиляционным агрегатам, воздухораспределительным или воздухозаборным устройствам, воздушным или воздушно-тепловым завесам и т. п.). На прилегающей территории за расчетные точки следует принимать точки, ближайшие к источникам шума (вентиляторы, открыто расположенные на территории, вытяжные или воздухозаборные шахты, выбросные устройства вентиляционных установок и т. п.), для которых нормируются уровни звукового давления.

а — источники шума (автономный кондиционер и плафон) и расчетная точка находятся в одном помещении; б — источники шума (вентилятор и элементы установки) и расчетная точка находятся в различных помещениях; в — источник шума — вентилятор находится в помещении, расчетная точка — на прилета ницей территории; 1 — автономный кондиционер; 2 — расчетная точка; 3 — генерирующий шум плафон; 4 — виброизолиро-ванный вентилятор; 5 — гибкая вставка; в — центральный глушитель; 7 — внезапное сужение сечения воздуховода; 8 — разветвление воздуховода; 9 — прямоугольный поворот с направляющими лопатками; 10 — плавный поворот воздуховода; 11 — прямоугольный поворот воздуховода; 12 — решетка; / учитывающая влияние присоединения вентилятора или дросселирующего устройства к сети воздуховодов в дб

Корень квадратный нз площади поперечного сечения патрубка вентилятора или воздуховода в мм

Ссылка на основную публикацию
Adblock
detector