1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простейшие приемные и передающие антенны

РадиобукА

Устройство такой антенны хорошо известно радиолюбителям. Массовыми типами приемных антенн являются: Г-образная (рис. 1,а) и Т-образная (рис. 1,6) однолучевые антенны, простой вертикальный или наклонный провод (рис. 1,в), иногда с «метелочкой» на вершине (рис. 1,г), а также различные наружные рамки и всевозможные упрощенные комнатные антенны.

Рассматривая антенну как радиотехническое устройство, следует помнить, что любой провод не только обладает активным сопротивлением, но и способен накапливать электрические заряды и индуктивность в самом себе — э. д. с. при всяких изменениях тока, т. е. провод обладает электрической емкостью и индуктивностью. Следовательно, любая антенна представляет собой колебательную цепь.

Этот своеобразный колебательный контур в силу того, что его собственная емкость и индуктивность равномерно распределены по всей длине провода, имеет свои физические особенности, заключающиеся в том, что при возникновении в антенне колебательного процесса ток и напряжение распределяются в проводе неравномерно, т. е. в каждой точке провода значения этих величин различны.

Если, например, в вертикальной антенне, работающей с заземлением, возникает колебательный процесс, то наибольший ток будет в той точке провода антенны, которая ближе к заземлению, т. е. в точке подключения антенны к приемнику. В следующих, вышележащих, точках провода ток будет постепенно уменьшаться и у самой вершины, т. е. у конца антенны, он спадет до нуля (рис. 2). Напряжение в такой антенне распределяется в обратном порядке. Наибольшая величина его относительно земли оказывается у верхнего конца провода, а наименьшая — в точке подключения его к приемнику.

Точки провода, в которых наблюдаются максимальные значения тока или напряжения, называются соответственно пучностями тока и пучностями напряжения, а те точки, где ток и напряжения равны нулю, называются узлами тока и узлами напряжения.

Как и всякая другая колебательная цепь, приемная антенна характеризуется величинами собственной емкости СА и собственной индуктивности Lа, которые зависят от геометрических размеров и формы антенны. Так, например, каждый метр однопроводной антенны, удаленной от других проводников, обладает собственной емкостью 5 пф и собственной индуктивностью около 1—2 мкгн. Простейшие любительские приемные антенны имеют обычно емкость около 200—250 пф, индуктивность около 20 мкгн и активное сопротивление около 25 ом.
Кроме того, антенна характеризуется еще одним очень важным параметром, который называется действующей или эффективной высотой.

Действующей или эффективной высотой данной антенны называют высоту условной вертикальной антенны, которая излучает (если рассматривать антенну как передающую) такую же мощность, как и реальная антенна, но имеет ток по всей длине одинаковый и равный значению тока в пучности реальной антенны.
Высота такой воображаемой антенны, как видно из рис. 3, всегда будет меньше геометрической высоты реальной антенны.

Действующая высота — понятие условное, принятое для облегчения расчетов антенн.

У различных приемных антенн действующая высота зависит от формы антенны и условий ее работы. Для Г-образных и Т-образных антенн она составляет около 0,7—0,8 их геометрической высоты. В большинстве случаев действующая высота обычных любительских антенн, применяющихся для радиовещательных приемников, составляет от 1,5 до 4 м.

Ознакомившись в общих чертах с физическими особенностями антенны, рассмотрим теперь антенную цепь в приемнике.

Типичная антенная цепь показана на рис. 4. Она состоит из самой антенны, обладающей собственной емкостью Сл, индуктивностью LA, активным сопротивлением Ra, и дополнительной катушки индуктивности L, которая связывает антенну с входным контуром приемника. Кроме того, в антенную цепь входит заземление или противовес.

Электромагнитные волны, излучаемые передающей радиостанцией, при переселении провода приемной антенны возбуждают в нем переменную э. д. с. Частота и характер изменений этой э. д. с. в точности соответствуют частоте и характеру всех изменений электромагнитного поля.

Величина э. д. с, возникающей в антенне, очень мала и измеряется микровольтами или — в лучшем случае — милливольтами. Значение ее зависит от мощности и удаленности передающей радиостанции, от условий и особенностей распространения радиоволн и от действующей высоты приемной антенны.
В современных радиовещательных приемниках антенную цепь не настраивают. Дело в том, что ламповые приемники имеют два-три контура (а иногда и более), настраивающихся одной ручкой. Этой же общей ручкой должна была бы одновременно настраиваться и антенная цепь. Но осуществить это очень трудно, ибо емкость разных антенн различна и вообще непостоянна: она может произвольно изменяться под действием внешних причин (при качании антенны, при изменении влажности воздуха и т. п.). Поэтому точно учесть емкость антенны нельзя и обеспечить неизменную настройку антенной цепи для любого участка диапазона практически невозможно. Оставлять антенную цепь настроенной на какую-либо одну частоту диапазона не имеет смысла, так как на остальных участках данного диапазона чувствительность приемника будет резко ухудшаться.
Чтобы чувствительность приемника не изменялась так резко по диапазону, резонанс антенной цепи выводят за пределы рабочего поддиапазона. Для этого включают в антенную цепь катушку L с такой индуктивностью, что резонансная частота антенного контура оказывается примерно на 30% ниже, чем самая низкая частота данного поддиапазона. Если, например, рабочий поддиапазон приемника разен 150—400 кги, то антенная цепь настраивается на частоту 115 кгц.

Настраивать антенную цепь на частоту, превышающую самую высокую принимаемую частоту, невыгодно, так как при этом чувствительность будет сильно меняться по диапазону.

На этом мы закончим краткое знакомство с физическими процессами в антенной цепи. Необходимо теперь лишь сформулировать требования, которым должна удовлетворять антенная цепь. Основные из них сводятся к следующему:
Антенна должна возможно лучше воспринимать энергию радиоволн.
Антенная цепь в пределах каждого поддиапазона должна обеспечивать возможно более высокую и постоянную чувствительность приемника.

Антенна не должна влиять на настройку последующих контуров приемной схемы, т. е. подключение любой антенны к приемнику не должно вызывать изменения настройки его входного контура. Для выполнения этого требования приходится применять слабую связь антенной цепи с входным контуром, что ухудшает чувствительность. Однако ослабление напряжения сигнала может быть возмещено усилением его в последующих каскадах приемника.

Любительские антенны.

Основные типы любительских антенн приведены на рис. 1.

Для лампового радиоприемника может быть применена любая из указанных антенн. Длина горизонтальной части Г-образной или Т-образной антенны в этом случае не должна превышать 20 м. Обычно она составляет 8—12 м.

Для детекторных приемников горизонтальная часть антенны делается несколько длиннее: до 30—50 м.

Высота подвеса антенны над крышами зданий и другими сооружениями желательна не менее 4 м, а при установке мачт на земле— не менее 10—12 м. Дальнейшее увеличение зысоты подвеса антенны даст незначительный выигрыш в громкости (и то только на детекторный приемник), ко приведет к заметному возрастанию атмосферных помех.

Комнатные антенны следует применять только для ламповых приемников и лишь втех случаях, когда почему-либо невозможно установить наружную антенну.

Приемно-передающие антенны

Антенной называется радиотехническое устройство, служащее для излучения электромагнитных волн в пространство или для приема электромагнитных волниз пространства. Одной из наиболее важных характеристик антенны является диаграмма направленности – графическое изображение зависимости интенсивности электромагнитных волн от углов и (угол измеряется в горизонтальной плоскости, угол – в вертикальной плоскости, и оба угла, как правило, отсчитываются от направления главного максимума диаграммы направленности).

Традиционно все антенны делятся на передающие и приемные. Передающей называется антенна, излучающая электромагнитное поле в пространство (закон изменения данного поля во времени задается законом изменения радиочастотного возбуждающего тока, подводимого ко входу антенны). В этом случае под диаграммой направленности понимается зависимость мощности электромагнитного поля, излучаемого антенной в данном (т.е. для конкретных значений углов и ) направлении, от величин углов и из диапазона 0. 360º.

Приемной называется антенна, принимающая электромагнитное поле из пространства (закон изменения этого поля во времени обуславливает собой закон изменения выходного наведенного в антенне тока). В этом случае под диаграммой направленности понимается зависимость мощности электромагнитного поля, принятого антенной с данного (т.е. при конкретном значении углов и ) направления, от величин углов и из диапазона 0. 360º. При условии, что источник, обладающий постоянной мощностью излучения ( ), при всех значениях и располагается на одном и том же расстоянии ( ). Во многих современных авиационных радиосистемах одна и та же антенна выполняет функции как излучения, так и приема электромагнитного поля, т.е. является приемо-передающей антенной. При этом в подавляющем большинстве случаев передающая и приемная диаграммы направленности совпадают. Другим важным фактором, определяющим форму диаграммы направленности антенн для радиосистем связи, является практическое соображение, что самолет, находящийся в полете, может быть ориентирован относительно наземного пункта (и тем более относительно второго самолета) произвольным образом. Поэтому для приема радиосигналов с любого направления антенна радиосистемы связи должна быть (по крайней мере, в горизонтальной плоскости) всенаправленной.

Наиболее простой антенной, удовлетворяющей требованию всенаправленности, является штыревая антенна. Она представляет собой металлический прут сравнительно небольшой (0,5. 2,5 м) длины. Пространственная диаграмма направленности штыревой антенны представляет собой (в идеальном случае) вырожденный (с нулевым внутренним диаметром) тор. Это означает, что сечения (рис. 2.3.1) такого тора имеют форму «восьмерки». В вертикальной плоскости (в плоскости расположения штыря) и окружности – в горизонтальной плоскости (в плоскости, перпендикулярной штырю).

В реальных случаях диаграмма направленности излучающей системы, в составе которой имеется штыревая антенна, может сильно отличаться от тороидальной. Это объясняется тем, что вблизи штыревой антенны могут оказаться иные объекты, которые отражают, а затем переизлучают свои (вторичные) электромагнитные поля, и те, интерферируя с первичным (созданным штыревой антенной) электромагнитным полем, формируют итоговое электромагнитное поле достаточно сложной формы. Именно так, в частности, обстоит дело со штыревой антенной, устанавливаемой на самолете – под влиянием первичного (со штыревой антенны) излучения в металлической обшивке корпуса самолета начинают возникать токи проводимости, которые создают вторичное излучение, накладывающееся на первичное, и в этом случае следует говорить уже не о диаграмме направленности штыревой антенны, а о диаграмме направленности излучающей системы «штыревая антенна-самолет».

Рассмотрим, в качестве примера, ситуацию, когда штыревая антенна установлена на передней кромке самолетного киля. Тогда:

— в идеальном случае .(рис. 2.15, а), когда самолет отсутствует, итоговая диаграмма направленности имеет форму тора («восьмерка» в сечении вертикальной плоскостью);

— в случае (рис. 2.15, б), когда излучение ведется на средних волнах, длины (0,1. 1 км) которых значительно превышают размеры самолета, то наведенные в металлической обшивке корпуса токи практически совпадают по фазе с токами, протекающими в штыревой антенне, и поэтому интерференционные явления практически не наблюдаются (система «штыревая антенна-самолет» имеет практически единый центр излучения); искажения тороидальной диаграммы направленности здесь минимальны;

— в случае (рис. 2.15, в), когда излучение ведется на коротких волнах, чьи длины (10. 100 м) соизмеримы с размерами самолета, то протекающие по антенне и по корпусу токи имеют разные фазы (корпус с токами и антенну можно рассматривать как два разнесенных в пространстве источника излучения), и создаваемые ими электромагнитные поля начинают интерферировать; тороидальная диаграмма направленности здесь искажается (иногда – довольно существенно);

— в случае (рис. 2.15, г), когда излучение ведется в ультракоротковолновом диапазоне, и длины (менее 10 м) волн не превышают размеров самолета и его элементов, то итоговая диаграмма направленности оказывается достаточно изрезанной (обладает многолепестковой структурой с глубокими провалами). Учитывая тот факт, что подача излучаемого радиочастотного радиосигнала производится именно в антенну, а не на корпус самолета, антенну нередко называют возбудителем электромагнитного излучения, исходящего от системы «антенна – самолет».

Сказанное означает, что для эффективного ведения бортовой радиосвязи следует, помимо выбора длины волны, еще и отыскивать оптимальное местонахождение антенны на самолете. Поиск места установки антенны оказывается тем более важным, что итоговую интенсивность излучаемого электромагнитного поля, определяет не первичное излучение антенны, а именно вторичное излучение корпуса, и антенна должна быть расположена в таком месте корпуса, где ее возбуждающее действие окажется максимальным. В качестве отдельных рекомендаций по выбору места установки самолетной антенны могут быть указаны следующие соображения:

— установку антенн следует производить в местах наибольшей концентрации токов (например, на верхушке киля);

— если требуется получить направленное излучение, антенну необходимо устанавливать в местах с максимально возможным радиусом кривизны (в частности, для излучения вертикально вниз антенну следует расположить на днище фюзеляжа);

— чтобы отсутствовал эффект затенения (в случае излучения электромагнитных волн с длинами короче нескольких дециметров), надо располагать антенны в местах, где отсутствуют резко выступающие элементы корпуса самолета (которые могут загородить наземную приемо-передающую антенну от самолетной);

— на вертолете, когда рабочая зона ограничена сверху (вращающимися лопастями) и снизу (близкой земной поверхностью), антенны дальней радиосвязи следует устанавливать на боковых сторонах (на обшивке) фюзеляжа. Рассмотрим наиболее типичные самолетные антенны, используемые в радиосистемах дальней и близкой связи.

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ликбез: основы теории по антеннам 7

Предисловие

В цикле статей «Ликбез по антеннам» планируется рассмотрение различного типа антенн, которые широко используются в беспроводной передачи данных. При описании антенн планируется разработка их электродинамической модели в распространенных программных пакетах, а также анализ их достоинств, недостатков и перспектив использования на беспроводных сетях будущего. В процессе прочтения данных статей читатели могут высказывать свои пожелания по дальнейшему рассмотрению тех или иных типов антенн. Все теоретические сведения будут приведены максимально наглядно без излишнего математического описания (насколько это возможно для теории антенн).

В цикле статей будет описан принцип работы, применение, реализация, а также составлены модели следующих типов антенн:

  1. Вибраторные антенны;
  2. Полосковые (patch) антенны;
  3. Антенные решетки;
  4. Антенны с бегущей волной (end-fire);
  5. Рупорные антенны;
  6. Зеркальные параболические антенны;
  7. Линзовые антенны;
  8. Вопросы согласования антенн с линиями питания.

Введение

Вся беспроводная передача данных основана на процессе распространения электромагнитного поля от источника в окружающее пространство. Антенна играет роль этого источника поля. Сам процесс излучения начинается с того, что под действием высокочастотных электромагнитных полей в излучающей системе (антенне) появляются сторонние токи и заряды. Токи и заряды в свою очередь подводятся от генератора по фидерному тракту (или фидера от слова «to feed» — питать).

Таким образом, в систему излучения электромагнитного поля входят: генератор колебаний, фидер и излучатель. Конечно, сам фидер и генератор непосредственно в излучении не участвуют (или точнее – не должны участвовать, если они правильно сконструированы), рисунок 1.


Рисунок 1 – Элементы системы излучения электромагнитного поля

Любая антенна обладает так называемым принципом «двойственности», который говорит о том, что любая антенна может быть как передающей (то есть преобразовывать волны линии передачи в расходящиеся волны окружающего пространства), так и приемной (осуществлять обратное преобразование).

Вне зависимости от реализации и вида антенны, она характеризуется следующими основными параметрами:

Диаграмма направленности (ДН). Это распределение напряженности (или энергии) поля в пространстве, показывает в каких направлениях и с какой мощностью излучает антенная система. Строится эта зависимость, как правило, в сферической системе координат. В зависимости от вида диаграммы (от того, насколько диаграмма «острая») различают изотропные антенны, слабонаправленные, высоконаправленные. От вида диаграммы направленности зависят такие важные характеристики антенны как коэффициент направленного действия (КНД) и коэффициент усилении (КУ). Ниже мы рассмотрим вид диаграммы направленности, а также КНД и КУ одной из самой простых антенн в разных плоскостях.

Коэффициент полезного действия антенны. Он должен быть достаточно высоким, а потери – малыми, именно по этой причине при реализации антенн используют металлические конструкции, обладающие высокой проводимостью и диэлектрики с малыми потерями.

Согласование линии передачи с нагрузкой. Так как и передающая и приемная антенны соединяются с линией питания, то ее входное сопротивление должно быть согласовано с волновым сопротивлением линии. Иначе будет возникать нежелательное возникновение отраженных волн, а наличие последних – это всегда уменьшение излучаемой мощности и источник дополнительных помех.

Вес и габариты. Ясно, что при реализации любого устройства нужно стремиться к получению его наименьших массогабаритных размеров, однако, отметим, что размеры антенны однозначно связаны с основной длиной волны, на которой работает антенна. Вообще в антенной технике не существует понятия «большая» и «маленькая» антенна. Размеры антенны принято характеризовать в длинах волн. Если а – это диаметр зеркала (например, зеркальной антенны), то ее размер можно записать так: это значит, что в диаметр зеркала укладывается 8 длин волн. Если такое зеркало работает в диапазоне 2.4 ГГц (длина волны 12,5 см), то его диаметр будет составлять 1 метр, а если это диапазон 900 МГц (длина волны 33 см) – то диаметр уже больше 2.5 метров.

Принцип работы передающей антенны

Рассмотрим принцип действия простейшего излучающего устройства. Если взять простую двухпроводную симметричную линию, то излучать в пространство она не будет, несмотря на то, что в ней текут токи высокой частоты, рисунок 2.


Рисунок 2 – Двухпроводная линия

Излучение будет отсутствовать за счет того, что токи I и I’ находятся в противофазе, что приводит их к взаимной компенсации. Для получения излучения можно развести концы двухпроводной линии, чтобы поля от токов I, I’ не могла компенсировать друг друга, рисунок 3.


Рисунок 3 – Разомкнутая двухпроводная линия

Такая антенна получила название симметричного вибратора. Распределение тока в вибраторе остается таким же, каким оно было на соответствующем участке двухпроводной линии. Для исследования поля, излученного антеннами из проводов, удобно представлять такую антенну в виде совокупности элементарных электрических вибраторов (ЭЭВ) малой длины (малой по сравнению с длиной волны). В пределах каждого такого элементарного вибратора амплитуду и фазу тока можно считать неизменными. В конечном итоге общее поле, излученное антенной, можно рассчитать как сумму полей, излученных отдельными элементарными вибраторами (в теории это называется принцип суперпозиции).

На практике ЭЭВ реализуется в виде диполя Герца. Это антенна является первым реализованным излучателем электромагнитных колебаний, рисунок 4.


Рисунок 4 – Диполь герца

Такой излучатель можно сделать, если на концах тонких проводов (длиной L, меньшей длины волны) установить проводящие тела с большой емкостью (например, металлические шары). Заряженные шары создают токи, которые значительно выше емкостных токов между проводами. Так обеспечивается равномерное распределение тока вдоль проводника. Отметим, что на практике диполь Герца практически не используется.

Характеристики антенны на примере симметричного вибратора

Ниже будет рассмотрена антенна (одна из самых простых в реализации) — симметричный вибратор. Назван он так потому, что напряженность поля (питающая проводник) подводится к его центру, а распределение тока по проводнику можно также считать симметричным. Сегодня существует большое количество программных пакетов, позволяющих производить электродинамических анализ различных устройств СВЧ и приборов оптического диапазона, среди них: FEKO, Microwave Studio, Ansys HFSS и др. Внешний вид и модель симметричного вибратора в программном пакете Ansys HFSS показана на рисунке 5.


Рисунок 5 – Симметричный вибратор

Cама антенна представляет собой развернутую двухпроводную линию, рассмотренную выше, в которой устанавливается режим стоячих волн.

В зависимости от того, какое отношение имеет длина вибратора L к длине волны λ, может формироваться различная геометрия диаграммы направленности. Для отношения 4L/λ=1 симметричный вибратор формирует диаграмму, показанную на рисунке 6:


Рисунок 6 – Трехмерная ДН симметричного вибратора длиной 4L/λ=2

Та же самая диаграмма, только нормированная и в вертикальной плоскости полярной системы координат:

Очевидно, что в горизонтальной плоскости диаграмма направленности будет иметь форму шара. Для наглядности вы можете себе представить, что посмотрите на трехмерный вид рисунка 6 сверху (на плоскость Phi).

Если отношение длины вибратора и длины волны 4L/λ=2, что соответствует увеличению частоты колебаний в 2 раза, то диаграмма направленности становится более «плоской» в вертикальной плоскости и как следствие имеет более высокий коэффициент усиления (примерно в 1.5 раза):


Рисунок 6 – Трехмерная ДН симметричного вибратора длиной 4L/λ=1

Дальнейшее увеличение частоты колебаний приводит к расщеплению диаграммы направленности:


Рисунок 7 – Расщепление диаграммы симметричного вибратора при увеличении частоты колебаний в 3 (слева) и 5 (справа) раз

Симметричный вибратор, несмотря на простоту, очень часто присутствует в качестве частей конструкции более сложных антенн. В заключении отметим, что все конструктивные реализации антенн создаются для того, чтобы создать направленность излучения в определенном направлении (или направлениях). Можно выделить два крупных класса способов реализации направленного излучения: это геометрическое воздействие на источник излучения (например, источник помещается в фокус параболоида или перед проводящим экраном) и воздействие токами, когда группа токов, сдвинутых по фазе, образуют суммарную направленную диаграмму (примером могут служить фазированные антенные решетки).

В дальнейшем будут рассмотрены различные модели антенн, перечисленных в аннотации.

Простейшие приемные и передающие антенны

Антенна представляет собой элемент сопряжения между передающим или приемным оборудованием и средой распространения радиоволн. Антенны, имеющие вид проводов или поверхностей, обеспечивают излучение электромагнитных колебаний при передаче, а при приеме они «собирают» падающую энергию.

Антенны, состоящие из проводов небольшого поперечного сечения по сравнению с длиной волны и продольными размерами, называют проволочными. Антенны, излучающие через свой раскрыв — апертуру, называют апертурными. Иногда их называют дифракционными, рефлекторными, зеркальными. Электрические токи таких антенн протекают по проводящим поверхностям, имеющим размеры, соизмеримые или много больше по сравнению с длиной волны.

Сравнивать и оценивать свойства антенн любых типов можно по их параметрам. Самым главным определяющим параметром передающей антенны как нагрузки для генератора или фидера является ее входное сопротивление. Параметром антенны как излучателя электромагнитных волн является коэффициент полезного действия, а также амплитудная характеристика направленности.

Входное сопротивление антенны определяется отношением напряжения высокой частоты на ее зажимах к току питания.

Не вся мощность, подводимая к антенне, излучается в окружающее пространство. Часть ее расходуется не на излучение, а теряется на нагревание как самой антенны, так и находящихся поблизости предметов. Отношение мощности, излученной антенной, к мощности, подводимой к ней, называют коэффициентом полезного действия антенны и выражают в процентах: .

Электромагнитные волны излучаются антенной в различных направлениях неравномерно. Антенн, излучающих электромагнитные волны равномерно во все стороны, не существует. Распределение в пространстве напряженности электрического поля, созданного антенной, характеризуется амплитудной характеристикой направленности. Она определяется зависимостью амплитуды напряженности создаваемого антенной поля (или пропорциональной ей величины) от направления на точку наблюдения в пространстве. Направление на точку наблюдения определяется азимутальным j и меридиональным q углами сферической системы координат, как показано на Рис. 6.58. При этом амплитуда напряженности электрического поля измеряется на одном и том же (достаточно большом) расстоянии r от антенны. Графическое изображение характеристики направленности называют диаграммой направленности. Пространственная диаграмма направленности изображается в виде поверхности f( j , q ). Построение такой диаграммы неудобно, поэтому на практике обычно строят диаграмму направленности в какой-нибудь одной плоскости, в которой она изображается плоской кривой f( j ) или f( q ) в полярной или декартовой системе координат.

На Рис. 6.58 в начале координат показана простейшая проволочная антенна — диполь Герца, пространственная диаграмма направленности которой приведена на Рис. 6.59, а. Диаграммы направленности в азимутальной и меридиональной плоскостях, построенные в полярной системе координат, представлены на Рис. 6.59, б и в.

Рис. 6.58. Сферическая система координат

Рис. 6.59. Диаграммы направленности: а — объемная, б, в — в азимутальной и меридианальной плоскостях

Помимо рассмотренных основных электрических параметров антенн существует целый ряд дополнительных специфических параметров как электрических, так и экономических, конструктивных, эксплуатационных.

Что касается приемных антенн, то оказывается, что количественно электрические параметры передающих и приемных антенн одни и те же, хотя физическое объяснение дается с точки зрения приема.

Приемная антенна имеет такие же значения входного сопротивления, коэффициента полезного действия и такую же диаграмму направленности, какие она имела бы при работе в качестве передающей. Существенным различием в работе передающей и приемной антенн является то, что в передающей антенне используются большие токи и напряжения, а в приемной — очень незначительные.

Особенности передающих антенн различных диапазонов. Километровые и гектометровые радиоволны широко используются для организации сети звукового радиовещания. Передающие антенны, как правило, устанавливаются в центре зон обслуживания, и поэтому должны создавать ненаправленное излучение вдоль поверхности Земли, т.е. иметь диаграмму направленности в горизонтальной плоскости в виде окружности. Таким условиям отвечают антенны-мачты и антенны-башни. Их высота обычно 150. 250 м, а некоторые антенны имеют высоту до 350 и даже 500 м.

Для радиосвязи и радиовещания на значительные расстояния (тысячи километров) используются декаметровые радиоволны. Особенности их распространения таковы, что антенны должны сформировывать направленное излучение с максимумом излучения под некоторым углом к поверхности Земли. Самыми распространенными типами передающих антенн, отвечающими этим требованиям, являются проволочные антенны: вибраторные, ромбические и синфазные в виде решетки из вибраторов, возбужденных определенным образом. Простейшая из этих антенн — горизонтальный симметричный вибратор — показана на Рис. 6.60.

Рис. 6.60. Проволочная антенна — вибратор горизонтальный диапазонный

На местных радиолиниях протяженностью 50. 100 км также используются в основном декаметровые радиоволны и простые антенны в виде вертикально подвешенного провода (Т- и Г-образные).

Диапазон метровых радиоволн используется главным образом для организации телевизионного и звукового вещания, а также для связи с подвижными объектами в пределах определенной зоны обслуживания. Передающие антенны, как правило, должны создавать ненаправленное излучение в горизонтальной плоскости.

Диапазоны дециметровых, сантиметровых и более коротких радиоволн применяются для организации радиорелейной связи. Антенны, устанавливаемые на радиорелейных линиях, должны обладать высокой направленностью, их диаграммы направленности должны иметь «игольчатую форму» (Рис. 6.61). Наиболее распространены апертурные (зеркальные) антенны. Схема простейшей из них — параболической антенны — приведена на Рис. 6.62. Особенность распространения метровых, дециметровых, сантиметровых и более коротких радиоволн такова, что антенны необходимо размещать на специальных опорах высотой десятки и даже сотни метров.

Рис. 6.61. Диаграмма направленности «игольчатой формы»

Рис. 6.62. Принцип построения однозеркальной параболической антенны

Особенности приемных антенн различных диапазонов. Антенна — устройство обратимое. Если антенна хорошо излучает радиоволны, то она хорошо их и принимает. Форма диаграммы направленности антенны не зависит от того, работает она на передачу или на прием. Содержание понятия «диаграмма направленности» для приемной антенны несколько отличается от приведенного выше для передающей антенны. Это график зависимости напряжения на входе радиоприемника от направления прихода принимаемой электромагнитной волны.

В качестве приемных антенн в километровом и гектометровом диапазонах используется рамочная антенна. В декаметровом диапазоне наиболее распространена антенна «бегущая волна». Антенна «волновой канал» является типичной для диапазона метровых волн, в частности для приема телевизионных сигналов. В диапазоне дециметровых и сантиметровых волн антенны являются обычно приемопередающими. Характерная схема одной из таких антенн показана на Рис. 6.62.

Электрическая цепь и вспомогательные устройства, с помощью которых энергия радиочастотного сигнала подводится от радиопередатчика к антенне или от антенны к радиоприемнику, называется фидером. Передающие антенны, используемые в километровом и гектометровом диапазонах радиоволн, соединяются с радиопередатчиком с помощью многопроводных коаксиальных фидеров. В декаметровом диапазоне фидеры обычно выполняются в виде проволочных двух- или четырехпроводных линий.

К антеннам метровых радиоволн энергия обычно подводится с помощью коаксиального кабеля. На более коротких волнах, в частности в сантиметровом диапазоне, фидер выполняется в виде полой металлической трубы — волновода прямоугольного, эллиптического или круглого сечения.

В связи с наблюдающейся тенденцией умощнения передающих радиостанций, работающих в диапазонах километровых, гектометровых и декаметровых радиоволн, очень важным представляются вопросы конструирования антенн и фидеров с повышенной электрической прочностью, т.е. разработка конструкций, способных работать со сверхмощными радиопередатчиками.

Значительный интерес представляет разработка устройств, обеспечивающих возможность подключения к одной антенне нескольких мощных радиопередатчиков, работающих на разных частотах.

Для радиоприема на декаметровых волнах перспективным представляется создание устройств, позволяющих управлять диаграммой направленности приемных антенн в соответствии с изменением направления угла прихода радиоволны. Следует ожидать, что в дальнейшем антенны с электрически управляемыми характеристиками займут доминирующее положение во многих областях антенной техники. Антенны радиорелейных линий совершенствуются в части увеличения концентрации энергии в главном направлении и снижения излучения в направлениях, несовпадающих с главным.

Простейшие приемние антенны

Физика радиоприемной антенны. Приемная антенна служит для приема электромагнитных волн, излучаемых передающего радиостанцией, и для подачи переменного напряжения принятого сигнала на вход приемника.

Устройство такой антенны хорошо известно радиолюбителям. Массовыми типами приемных антенн являются: Г-образная (рис. 1,я) и Т-образная (рис. 1,6) однолучевые антенны, простой вертикальный или наклонный провод (рис. 1,в), иногда с «метелочкой» на вершине (рис. 1,г), а также различные наружные рамки и всевозможные упрощенные комнатные антенны.

Рассматривая антенну как радиотехническое устройство, следует помнить, что любой провод не только обладает активным сопротивлением, но и способен накапливать электрические заряды и индуктивность в самом себе — э. д. с. при всяких изменениях тока, т. е. провод обладает электрической емкостью и индуктивностью. Следовательно, любая антенна представляет собой колебательную цепь.

Этот своеобразный колебательный контур в силу того, что его собственная емкость и индуктивность равномерно распределены по всей длине провода, имеет свои физические особенности, заключающиеся в том, что при возникновении в антенне колебательного процесса ток и напряжение распределяются в проводе неравномерно, т. е. в каждой точке провода значения этих величин различны.

Если, например, в вертикальной антенне, работающей с заземлением, возникает колебательный процесс, то наибольший ток будет в той точке провода антенны, которая ближе к заземлению, т. е. в точке подключения антенны к приемнику. В следующих, вышележащих, точках провода ток будет постепенно уменьшаться и у самой вершины, т. е. у конца антенны, он спадет до нуля (рис. 2). Напряжение в такой антенне распределяется в обратном порядке. Наибольшая величина его относительно земли оказывается у верхнего конца провода, а наименьшая — в точке подключения его к приемнику.

Точки провода, в которых наблюдаются максимальные значения тока или напряжения, называются соответственно пучностями тока и пучностями напряжения, а те точки, где ток и напряжения равны нулю, называются узлами тока и узлами напряжения.

Как и всякая другая колебательная цепь, приемная антенна характеризуется величинами собственной емкости Са и собственной индуктивности La, которые зависят от геометрических размеров и формы антенны. Так, например, каждый метр однопроводной антенны, удаленной от других проводников, обладает собственной емкостью 5 пф и собственной индуктивностью около 1—2 мкгн. Простейшие любительские приемные антенны имеют обычно емкость около 200—250 пф, индуктивность около 20 мкгн и активное сопротивление около 25 ом.

Кроме того, антенна характеризуется еще одним очень важным параметром, который называется действующей или эффективной высотой.

Рис. 1. Различные типы приемных антенн.

Действующей или эффективной высотой данной антенны называют высоту условной вертикальной антенны, которая излучает (если рассматривать антенну как передаю-щую) такую же мощность, как и реальная антенна, но имеет ток по всей длине одинаковый и равный значению тока в пучности реальной антенны.

Высота такой воображаемой антенны, как видно из рис. 3, всегда будет меньше геометрической высоты реальной антенны. Действующая высота — понятие условное, принятое для облегчения расчетов антенн.

Рис. 2. Распределение тока и напряжения в вертикальной антенне.

Рис. 3. Геометрическая и действующая высоты антенны.

У различных приемных антенн действующая высота зависит от формы антенны и условий ее работы. Для Г-образных и Т-образных антенн она составляет около 0,7—0,8 их геометрической высоты. В большинстве случаев действующая высота обычных любительских антенн, применяющихся для радиовещательных приемников, составляет от 1,5 до 4 м.

Ознакомившись в общих чертах с физическими особенностями антенны, рассмотрим теперь антенную цепь в приемнике. Типичная антенная цепь показана на рис. 4. Она состоит из самой антенны, обладающей собственной емкостью Са, индуктивностью LА, активным сопротивлением RA, н дополнительной катушки индуктивности L, которая связывает антенну с входным контуром приемника. Кроме того, в антенную цепь входит заземление или противовес.

Рис. 4. Антенная цепь приемника.

Электромагнитные волны, излучаемые передающей радиостанцией, при переселении провода приемной антенны возбуждают в нем переменную э. д. с. Частота и характер изменений этой э. д. с. в точности соответствуют частоте и характеру всех изменений электромагнитного поля.

Величина э. д. с., возникающей в антенне, очень мала и измеряется микровольтами или — в лучшем случае — милливольтами. Значение ее зависит от мощности и удаленности передающей радиостанции, от условий и особенностей распространения радиоволн и от действующей высоты приемной антенны.

В современных радиовещательных приемниках антенную цепь не настраивают. Дело в том, что ламповые приемники имеют два-три контура (а иногда и более), настраивающихся одной ручкой. Этой же общей ручкой должна была бы одновременно настраиваться и антенная цепь. Но осуществить это очень трудно, ибо емкость разных антенн различна и вообще непостоянна: она может произвольно изменяться под действием внешних причин (при качании антенны, при изменении влажности воздуха и т. п.). Поэтому точно учесть емкость антенны нельзя и обеспечить неизменную настройку антенной цепи для любого участка диапазона практически невозможно.

Что такое антенна, виды антенн и их применение в радио и связи

Антенны (от лат. слова antenna —- мачта, рея) в передатчиках служат для преобразования радиочастотных электрических колебаний в энергию электромагнитного поля (радиоволн), в приемниках — для преобразования энергии радиоволн в токи радиочастоты.

Любую антенну можно использовать как для передачи, так и для приема, причем ее характеристики (диапазон частот, направленные свойства и др.) сохраняются.

Этим в значительной мере объясняется тот факт, что назначение антенны (приемная или передающая) ее условное обозначение обычно не отражает. Само расположение символа антенны на схеме однозначно определяет ее функцию (напомним, что развитие схемы, как правило, происходит слева направо).

Рис. 1. Обозначение симметричных антенн на схемах.

Общее обозначение антенны применяют в тех случаях, когда нужно показать несимметричную антенну, т. е. антенну, соединяемую с передатчиком или приемником одним проводом (вторым проводам служит земля). Такие антенны используют в диапазонах длинных, средних и коротких воли. В ультракоротковолновом диапазоне, а также в коротковолновом применяют симметричные антенны, т. е. антенны с двухпроводным выходом (или входом). Общее обозначение симметричной антенны отличается от указанных наличием двух выводов (рис. 1,а).

Назначение и особенности антенны в самом общем виде показывают знаками направления распространения потока электромагнитной энергии. Символы приемной, передающей и приемно-передающей антенны, построенные с применением этих знаков, используются во многих схемах.

Стандарт ЕСКД предусматривает специальные знаки для указания таких особенностей антенн, как ширина и характер движения (вращение, качание) главного лепестка диаграммы направленности, тип поляризации, направленность по азимуту и высоте и т. д. В качестве примеров использования таких знаков на рис. 1 показаны условные обозначения вращающейся антенны (б) и антенн с горизонтальной (в) и вертикальной (г) поляризацией.

Для повышения эффективности несимметричных передающих и приемных антенн используют заземление (в простейшем случае — это металлический лист или труба, зарытые на глубину почвенных вод). На схемах заземление изображают тремя короткими штрихами, вписанными в прямой угол (рис. 2,а). Иногда вместо заземления применяют противовес — большое число проводов, натянутых над поверхностью земли на небольшой высоте. Такое устройство обозначают двумя параллельными линиями разной длины, большая из которых символизирует землю (рис. 2, 6).

Рис. 2. Обозначение на схемах заземления.

Рассмотренные условные обозначения построены функциональным методом. Другими словами, за их основу взят общий символ антенны, а характеристики выражены вспомогательными знаками. В радиотехнике такие обозначения применяют в основном в структурных и функциональных схемах, т. е. на первых этапах разработки прибора, когда характеристики антенны определены, а конкретный тип ее еще не выбран.

В принципиальных схемах чаще используют условные графические обозначения, напоминающие предельно упрощенные рисунки конкретных разновидностей антенн. Так, простейшую антенну — несимметричный вибратор (вертикальный провод, штырь) изображают отрезком вертикальной утолщенной линии (рис. 3). Подобные антенны применяют в диапазонах длинных, средних, коротких и ультракоротких волн.

Рис. 3. Антенна — несимметричный вибратор в приемнике.

Однако для хорошей работы такой антенны ее длина должна быть равна примерно четверти длины рабочей волны. В диапазонах коротких и ультракоротких волн, длина которых не превышает нескольких десятков метров, это требование выполнить легко, а вот на средних и тем более на длинных волнах — гораздо труднее, так как четверть длины волны в этих диапазонах достигает сотен метров.

Чтобы не строить дорогостоящие высотные сооружения, к верхнему концу вертикального провода (вибратора) присоединяют один или несколько горизонтальных проводов, действие которых заключается в кажущемся удлинении вибратора. На схемах Г-образную и Т-образную антенны обозначают символами, наглядно передающими их характерные особенности (рис. 4,а, б).

Рис. 4. Обозначение на схемах Г-образных и Т-образных антенн.

У рассмотренных несимметричных вибраторов излучателем (приемником) радиоволн служит вертикальная часть. В диапазонах же коротких и ультракоротких волн в силу особенностей их распространения обычно применяют антенны, у которых рабочими являются горизонтальные части.

Простейшей антенной в эдах диапазонах является симметричный вибратор, представляющий собой два изолированных горизонтальных проводника одинаковой длины, между которыми подключена двухпроводная линия, соединяющая антенну с приемником или передатчиком. Эту линию связи называют фидером (от англ. feeder — питатель). Общая длина вибратора обычно равна примерно половине длины рабочей волны. «

Симметричный вибратор (его условное графическое обозначение показано на рис. 5) обладает явно выраженными направленными свойствами. Лучше всего он принимает или излучает в плоскости, перпендикулярной его оси, хуже всего — в плоскостях, проходящих через нее. Поэтому такую. антенну (например, для приема телевидения) располагают таким образом, чтобы ее горизонтальные части (плечи) были перпендикулярны направлению на телецентр.

Рис. 5. Обозначение антенны «Симметричный вибратор».

На практике часто требуется, чтобы антенна могла излучать или принимать радиоволны в достаточно широкой полосе частот. Достигают этого ис; пользованием в качестве плеч вибратора нескольких параллельных провод,ни ков, соединенных концами.

Антенны такой конструкции, известные под названием диполя Надененко, нашли широкое применение в коротковолновой связи. С той же целью (расширение диапазона частот) телевизионные антенны часто изготовляют из отрезков толстых трубок или применяют сложные вибраторы, например петлевые.

Петлевой вибратор представляет собой два полуволновых вибратора, соединенных концами. Эта особенность конструкции петлевого вибратора нашла отражение и в его условном обозначении (рис. 6).

Рис. 6. Антенна — петлевой вибратор.

Важным условием хорошей работы антенны является согласование ее входного сопротивления с волновым сопротивлением фидера, так как только в этом случае она может излучать или принимать наибольшую мощность. Для согласования антенн с фидером используют специальные устройства в виде отрезков двухпроводных линий или применяют так называемое шунтовое питание вибраторов.

Симметричный вибратор шунтового питания представляет собой сплошной проводник длиной, также равной половине длины волиы. Фидер подключают к нему в двух точках, расположенных симметрично относительно его середины. Изменяя места подключения фидера к вибратору, можно добиться равенству входного сопротивления антенны волновому сопротивлению фидера, т. е. согласования. Точно так же согласовывают с фидером и петлевые вибраторы шунтового питания. Условное обозначение полуволнового вибратора с шунтовым питанием представлено на рис. 7.

Рис. 7. Условное обозначение полуволнового вибратора с шунтовым питанием.

При использовании в качестве фидера коаксиального кабеля возникает необходимость в симметрировании, т. е. создании условий, при которых токи в точках подсоединения к вибратору имеют противоположные фазы. На практике симметрирующее устройство выполняют в виде отрезка кабеля полуволновой длины, согнутого в виде буквы U.

Питание через коаксиальный кабель с симметрирующим устройством такого рода иллюстрирует условное обозначение петлевого вибратора, показанное на рис. 8 (кабель здесь обозначен кружком с отрезком касательной, параллельной линии электрической связи, а согласующее устройство — дугой, соединяющей выводы вибратора).

Рис. 8. Питание через коаксиальный кабель с симметрирующим устройством.

Для связи на коротких волнах антенны должны быть однонаправленными, т. е. излучать и принимать радиоволны они должны только с одного направления. Типичным представителем таких антенн является ромбическая антенна, представляющая собой ромб, выполненный из провода, стороны которого примерно вчетверо больше длины волны. К одному из острых углов антенны подключают двухпроводный фидер, а к другому — поглощающую нагрузку, сопротивление которой равно волновым сопротивлениям антенны и фидера. В условном обозначении ромбической антенны символ резистора (поглощающей нагрузки) уменьшен по сравнению с обычным примерно вдвое. Это делает обозначение антенны более компактным (рис. 9).

Рис. 9. Более компактное обозначение антенны.

В метровом и дециметровом диапазонах волн часто используют антенны «волновой канал», обладающие значительно большим, по сравнению с одиночным вибратором, коэффициентом направленного действия. Такая антенна, кроме основного — активного — вибратора, содержит неоколько пассивных. Один из них, расположенный за активным, называют рефлектором (от лат. reflectere — отражать), остальные (расположенные перед активным) — директорами (directio — направлять). Длина рефлектора — несколько больше, а директоров — несколько меньше длины активного вибратора. На схемах это показывают различной длиной соответствующих символов в условном обозначении антенны «волновой канал» (рис. 10).

Рис. 10. Условное обозначении антенны «волновой канал».

С целью улучшения направленных свойств антенн применяют также металлические рефлекторы в виде согнутых из металлического листа уголков, параболоидов и т. п. Условное обозначение такого рефлектора воспроизводит (конечно, упрощенно) его профиль в сечении. В качестве примера на рис. 11 доказаны условные графические обозначения антенны с излучателем (приемником) в виде симметричного вибратора и уголковым рефлектором (а) и антенны с криволинейным рефлектором (б), вибратор которой питается через коаксиальный кабель (симметрирующее устройство дли простоты не изображено) .

Рис. 11. Обозначения антенн с излучателем (приемником) в виде симметричного вибратора и уголковым рефлектором (а) и антенны с криволинейным рефлектором (б).

Для передачи электромагнитной энергии в диапазонах сантиметровых и миллиметровых волн используют волноводы — металлические Трубы, обычно прямоугольного сечения. Открытый конец волновода излучает электромагнитные волны. Чтобы улучшить излучение, к нему пристраивают пирамидальную воронку, которую называют рупорной антенной. Условное обозначение последней приведено на рис. 12. Здесь уголок, напоминающий гнездо разъемного соединения, символизирует рупор антенны, прямоугольник на присоединенной к нему линии электрической связи — волновод прямоугольного сечения.

Рис. 12. Антенна — пирамидальная воронка.

Улучшение направленных свойств в этих диапазонах волн можно также получить применением металлического рефлектора, поместив в его раскрыв рупорный излучатель (рис. 13). Хорошими направленными свойствами обладает и так называемая диэлектрическая антенна. Она представляет собой сплошной или полый стержень из высококачественного диэлектрика (полистирола, полиэтилена), на основание которого надет металлический стакан, выполняющий функции рефлектора. На расстоянии в четверть длины волны от дна стакана в теле антенны закреплен возбуждающий штырь.

Рис. 13. Рупорный излучатель.

Благодаря особой форме образующей стержня Электромагнитные волны выходят из него под одинаковыми углами к оси, в результате чего и создается направленное излучение. Условное графическое обозначение диэлектрической антенны — узкий заштрихованный наклонными линиями треугольник с линией-выводом от меньшего основания (рис.. 14).

Рис. 14. Условное графическое обозначение диэлектрической антенны.

Широкое применение в радиоприемной технике нашли так называемые магнитные антенны (они реагируют не на электрическую составляющую электромагнитных волн, как все рассмотренные ранее антенны, а на магнитную). Простейшая антенна такого типа — рамка, состоящая из одного или нескольких витков провода. Независимо от формы витков рамочную антенну изображают в виде незамкнутого квадрата с линиями-выводами от соседних сторон (рис. 15).

Рис. 15. Изображение рамочной антенны.

Гораздо чаще используют магнитные антенна с магнитопроводом из феррита. На схемах их обозначают как одну или несколько (по числу обмоток) катушек индуктивности с общим магнитопроводом, но в отличие от последних располагают всегда горизонтально (рис. 16,а).

Рис. 16. Магнитная антенна.

Принадлежность к антенным устройствам показывают общим символом, помещая его над серединой условного обозначения магнитопровода. Обмотки магнитной антенны обычно используют в качестве катушек входных колебательных контуров, поэтому обозначают их кодом катушек — латинской буквой L, а возможность подстройки их индуктивности (перемещением по магнитопроводу) показывают уже знакомым знаком подстроечного регулирования (рис. 16,6).

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Ссылка на основную публикацию
Adblock
detector