1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разница между числом и цифрой

Чем отличается цифра от числа

Все знают, что есть цифры и числа. Но если спросить: «Чем отличается цифра от числа?«, то многие дети, а порой и взрослые, затрудняются с ответом. А как объяснить эту разницу ребенку простыми словами?

Чтобы ответить на этот вопрос и понять в чём различие между цифрой и числом надо разобраться с понятиями, что такое цифра и что такое число.

Числа и цифры: в чем разница

Содержание

Что такое цифра?

Цифра — это письменный знак, изображающий число.

Что значит слово цифра? Это слово арабского происхождения и означает ноль или пустое место. Их существует только десять. Они придуманы для обозначения числа. Цифр всего 10.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Что такое число?

Число — это основное математическое понятие.

Его используют для:

  • количественной характеристики;
  • сравнения;
  • обозначения нумерации объектов.

Числа записываются при помощи цифр. Различают несколько видов чисел.

В древнейшие времена цифры обозначали прямолинейными пометками. Палочки до сих пор используются для обозначения римских цифр. Римских цифр 7.

I, V, X, L, C, D, M

Римские числа также, как и арабские, образуются при помощи цифр, только в данном случае римских.

В римских числах желательно разбираться, т.к. они часто используются не только в школьном курсе математики, но и в жизни. Например, на циферблате часов.

Отличия числа от цифры

  1. С числами можно проводить различные математические действия. С цифрами такого делать нельзя.
  2. Число может быть отрицательным, дробным, в отличие от цифр.
  3. Количество арабских цифр всего 10 (римских — 7), а чисел — бесконечное множество, т.к. они состоят из цифр.

Надеюсь, что теперь вам всё понятно, и вы сможете без труда объяснить даже ребёнку, чем отличается число от цифры.

На уроках математики в начальной школе используется очень полезное упражнение. Детей просят дать характеристику числу. Другими словами рассказать о числе все, что знаешь. Не всем детям это задание даётся легко. Чтобы его выполнить пригодятся вышеописанные знания и не только.

Какие виды чисел изучаются в начальной школе?

В начальной школе рассматриваются: натуральные числа, число 0, доли и дроби.

Натуральные числа — используются для счёта предметов;

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11…

Однозначные числа — состоят из одной цифры;

1, 2, 3, 4, 5, 6, 7, 8, 9

Двузначные числа — состоят из двух цифр;

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 … 99

Соответственно самое маленькое двузначное число 10, а самое большое — 99.

Аналогично числа можно охарактеризовать как трёхзначные, четырёхзначные и т.д.

Иногда дети затрудняются назвать самое маленькое, например, пятизначное число (10 000) или самое большое семизначное (9 999 999). Просто полезно будет потренироваться это делать.

Чётные — числа, которые делятся пополам без остатка или же заканчиваются на 0, 2, 4, 6, 8;

2, 4, 6, 8, 10, 12, 14…

Нечетные — числа, которые не делятся на 2 без остатка;

1, 3, 5, 7, 9, 11, 13…

Круглые — числа, которые заканчиваются нулём.

10, 20, 30, 40, 50…

Как дать характеристику числу?

Разберём несколько примеров.

Число 7 — однозначное, нечетное, соседи числа 7 числа 6 и 8.

Также чисел первого десятка можно добавить такое дополнительное задание, как состав числа. Т.е. число 7 можно получить сложением чисел 1 и 6, 2 и 5, 3 и 4.

Число 10 — двузначное, чётное, круглое, соседи числа 9 и 11. Число 10 можно получить сложением чисел 1 и 9, 2 и 8, 3 и 7, 4 и 6, 5 и 5.

Чем крупнее число, тем больше можно о нём рассказать.

Число 999 — наибольшее трёхзначное число, нечётное, соседи 998 и 1000, в числе 9 сотен, 9 десятков и 9 единиц.

Надеюсь, что полученные знания были вам полезны и теперь вы знаете чем отличается цифра от числа, сможете объяснить это ребёнку простыми словами, а также потренироваться давать характеристику числам.

С уважением, Ольга Наумова

Благодарю, что поделились статьей в социальных сетях!

Математическая сказка «Чем отличаются цифры от чисел»

Татьяна Бушенкова
Математическая сказка «Чем отличаются цифры от чисел»

Сказка «Чем отличаются цифры от чисел»

Цель: — закрепить знания о цифрах и числах;

— побуждать к выделению предметов имеющих геометрические формы.

Жил-был мальчик Вова. Он очень не любил заниматься математикой. И вот когда очередной раз прогуливал урок, прохлаждаясь в парке, катался с горки, полеживал на мягкой травке под деревом, слушал пение птиц и радовался яркому и жаркому солнцу. Вдруг внезапно солнце заволокло тучами, стало темно, поднялся сильный ветер, да все как закружит. Вова и попал в этот вихрь, и унес его далеко, далеко в математическое государство. Мальчик не сразу понял, где это он очутился. Там было так необыкновенно красиво. Красивые дома в форме геометрических фигур.

По тропинке бежит ежик, прыгает кенгуру, под кустом сидит зайчик, по стволу дерева стучит дятел, а сидя, важно на ветке наблюдает за Вовой попугай, так как он следит за порядком в государстве. В самом центре государства находится озеро большое, ну просто очень большое,- по которому даже ходят корабли, не далеко от берега сложив крылья спит утка, рядом стоит, охраняет сон цапля. Обратила внимание на чужака — Вову и смотрит с презрением, еще одна обитательница государства. А Вова все смотрит, рассматривает, диву дивится, таких интересных птиц-цифр (чисел, животных-цифр (чисел) ни где еще не встречал. Идет он дальше и дальше, вот на полянке петушок с курочкой зернышки клюют.

Долго ходил прогульщик по Математическому государства, пока не вышел на дорожку которая вела к очень яркому, сияющему замку. Вова даже ахнул от удивления и скорее побежал в замок, пока были открыты ворота. Как только он вошел, и ворота за ним захлопнулись. Он очень напугался, начал бегать, кричать, звать на помощь. В замке было тихо только эхо раздавалось от Вовочкиных криков и его ни кто не слышал. И вдруг яркий свет ослепил глаза, перед мальчиком появилась Государыня Математика – «Не плачь, расскажи мне мальчик Вова, как же ты тут оказался?» Конечно, прогульщику пришлось рассказать, как он прогулял урок математики. Математика внимательно выслушала мальчика и сказала, что может помочь ему, если только расскажет, чем цифры отличаются от чисел. А если не знает, то останется навсегда жить в замке и прислуживать ей.

Тут- то от страха прогульщик Вова и вспомнил: — «Цифра и число — это два разных понятия. Цифра обозначает обычно символ, знак. Число обозначает количество. Двухзначное число — это число, состоящее из двух цифр. Существуют различия в понятиях «цифра» и «число». Всего существует 9 цифр: 1,2,3,4,5,6,7,8,9,0. К числам относятся 1,2,3,4,5,6,7,8,9,0, а также 10,11,12 и многие другие.

Числа состоят из цифр и обозначаются ими. Число 1 состоит из цифры 1. Число 200 состоит из цифр 2 и 0. Число 25 состоит из двух цифр: 2 и 5. Номер мобильного телефона 9876543210 состоит из десяти цифр.

Цифра — это символ или графический знак, с помощью которого записывается число.

Однозначные числа можно перепутать с цифрами. Числа можно складывать, делить и проводить с ними другие математические операции. Этого нельзя делать с цифрами. Цифрами можно обозначить что-либо, например, уравнение».

Государыня Математика была очень удивлена такими знаниями прогульщика. «Ну что же, хорошо, возвращайся домой». Ворота отварились и Вова радостный побежал по дорожке и начал капать дождик. И тут то Вова и проснулся от того, что на его лицо попадали капли дождя, начал подниматься ветер. Он быстренько встал стряхнул с себя листву, траву и побежал в школу. «Неееет, я больше ни когда ни буду прогуливать уроки математики, она такая интересная и занимательная

Математическая сказка в познавательном развитии младших дошкольников «Математическая сказка в познавательном развитии младших дошкольников». МКДОУ – детский сад Лучик, подготовила воспитатель первой квалификационной.

Дидактическая игра «Чем питаются животные» по закреплению знаний о том, чем питаются разные домашние и дикие животные Зайка завтракал на грядке, Как же овощи здесь сладки! Уплетал зайчишка ловко И капустку, и морковку. (Людмила Громова) Ежик по лесу гулял,.

Конспект непосредственной образовательной деятельности по ФЭМП «Математическая сказка». Подготовительная группа Цель: систематизировать элементарные математические представления. Задачи: закреплять названия времен года, дней недели, закреплять элементарные.

Лэпбук «Цифры от 0 до 5» Лэпбук – это картонная папка, в которой собран материал на тему » Цифры от 0 до 5 «, которую я сделала для детей, чтобы привить своим детям.

Конспект занятия по математике в подготовительной группе «Математическая сказка «Колобок» Конспект занятия по математике в подготовительной группе. Цели: 1. Закреплять знания детей порядкового счета в пределах 10 (прямой и обратный.

Математическая сказка о точке В одном пенале жил простой карандаш. Думаете, он был самым обыкновенным? Нет, карандаш был волшебным и, поэтому всё, что он рисовал, оживало.

Математическая сказка «Сказка о том, как Петя спас волшебную страну» В одной чудесной, волшебной стране жили не обычные жители. Они никогда не ругались между собой, были очень дружелюбными. И сама страна у.

Презентация «Разностное и кратное сравнение чисел» «Решение задач на кратное и разностное сравнение чисел» Урок в 5 «в» классе коррекционной школы VIII вида Подготовила: учитель математики.

Урок математики в 6 классе «Сравнение чисел» Тема: Сравнение чисел Тип урока: «открытие» новых знаний Цель урока: формирование навыка сравнения отрицательных чисел и чисел с разными.

Занятие в подготовительной группе «В мире чисел» Занятия по математическому развитию в подготовительной группе Тема. «В мире чисел» Программное содержание: 1. Учить детей составлять задачи,.

Чем отличается число от цифры: математические и лингвистические различия

Казалось бы, все знают, что такое цифра и число. Но если поставить вопрос по-другому: «А чем отличается число от цифры?» , то многие затруднятся с ответом. Для того, чтобы приступить к отличиям, следует дать точное определение этим понятиям.

Что такое цифра?

Цифра — это упорядоченная знаковая система, предназначенная для записи чисел. Цифрами считаются только те символы, которые в отдельности обозначают числа. Например, знак «-» хоть и применяется для того, чтобы записать число, но цифрой он не считается. Цифрами считается ряд от 0 до 9. Само слово «цифра» имеет арабские корни и обозначает «ноль» или «пустое место». Эти символы бывают следующих видов:

  • арабские;
  • римские;
  • шестнадцатеричные и др.

Это перечислены самые известные разновидности. В разных языках, например, в древнегреческом, для записи чисел используют буквы. Чаще всего в обиходной речи люди под словом «цифры» подразумевают числа, которыми записываются числовые данные. Следует помнить, что отрицательных, дробных и натуральных цифр не существует.

Привычная нам система исчисления основывается на цифрах арабского происхождения, которые стали известны европейцам в 13-м веке. До этого для записи чисел использовали римские графические символы. Сейчас эту разновидность можно увидеть на циферблате часов, а также в книгах.

Что такое число?

Число — это основное математическое понятие. Его используют для:

  • количественной характеристики;
  • сравнения;
  • обозначения нумерации объектов.

Числа записываются цифрами и иногда при помощи символов операций в математике. Они возникли еще в первобытном обществе, когда появилась потребность в счете. Числа бывают:

  • натуральные — получаются при естественном счете;
  • целые — получаются при помощи объединения натуральных чисел;
  • рациональные — имеют вид дроби;
  • действительные;
  • комплексные.

Два последних вида чисел имеют важное значение для математического анализа и получаются благодаря расширению рациональных (для действительных) и действительных (для комплексных) чисел.

Если в древние времена числа были нужны для перечисления, то с научным прогрессом их значение возросло.

Отличия числа от цифры

  1. С числами можно проводить различные математические действия. С цифрами такого делать нельзя.
  2. Число может быть отрицательным, дробным, в отличие от цифр.
  3. Количество цифр всего 10, а чисел — бесконечное множество, т.к. они состоят из цифр.

Кроме различий, с математической точки зрения, существуют и лингвистические отличия. Они рассматривают, в каких случаях можно говорить «цифра», а когда — «число». Если в разговоре упоминаются официальные показатели, то уместно говорить слово «цифра». Это могут быть, например, статистические данные.

Понятие «цифры» широко распространено в нумерологии. Нумерологи используют это понятие как знак, который способен влиять на судьбу человека. Они наделяют его мистическими свойствами. Например, нумерологи уверены в том, что некоторые цифры притягивают удачу.

Число употребляют тогда, когда нужно назвать количество чего-либо, или когда речь идет о календарной дате или дне месяца. В русском языке для употребления этого понятия применяются порядковые числительные.

По сравнению с первобытными и древними обществами, у понятия «цифра» расширилась область употребления. Теперь это — не только символ в математике. Сейчас люди говорят о цифровом телевидении, цифровом формате. Так же и с числами — теперь они применяются, например, в информатике. Получается, что с развитием общества и науки развиваются и математические понятия. После прочтения всех математических и лингвистических тонкостей читатели знают, чем отличается число от цифры.

Название чисел. В чем разница между числом и цифрой

Казалось бы, все знают, что такое цифра и число. Но если поставить вопрос по-другому: «А число от цифры?» , то многие затруднятся с ответом. Для того, чтобы приступить к отличиям, следует дать точное определение этим понятиям.

Что такое цифра?

Цифра — это упорядоченная знаковая система, предназначенная для записи чисел. Цифрами считаются только те символы, которые в отдельности обозначают числа. Например, знак «-» хоть и применяется для того, чтобы записать число, но цифрой он не считается. Цифрами считается ряд от 0 до 9. Само слово «цифра» имеет арабские корни и обозначает «ноль» или «пустое место». Эти символы бывают следующих видов:

Это перечислены самые известные разновидности. В разных языках, например, в древнегреческом, для записи чисел используют буквы. Чаще всего в обиходной речи люди под словом «цифры» подразумевают числа, которыми записываются числовые данные. Следует помнить, что отрицательных, дробных и натуральных цифр не существует.

Привычная нам система исчисления основывается на цифрах арабского происхождения, которые стали известны европейцам в 13-м веке. До этого для записи чисел использовали римские графические символы. Сейчас эту разновидность можно увидеть на циферблате часов, а также в книгах.

Число — это основное математическое понятие. Его используют для:

  • количественной характеристики;
  • сравнения;
  • обозначения нумерации объектов.

Числа записываются цифрами и иногда при помощи символов операций в математике. Они возникли еще в первобытном обществе, когда появилась потребность в счете. Числа бывают:

  • натуральные — получаются при естественном счете;
  • целые — получаются при помощи объединения натуральных чисел;
  • рациональные — имеют вид дроби;
  • действительные;
  • комплексные.

Два последних вида чисел имеют важное значение для математического анализа и получаются благодаря расширению рациональных (для действительных) и действительных (для комплексных) чисел.

Если в древние времена числа были нужны для перечисления, то с научным прогрессом их значение возросло.

  1. С числами можно проводить различные математические действия. С цифрами такого делать нельзя.
  2. Число может быть отрицательным, дробным, в отличие от цифр.
  3. Количество цифр всего 10, а чисел — бесконечное множество, т.к. они состоят из цифр.

Кроме различий, с математической точки зрения, существуют и лингвистические отличия. Они рассматривают, в каких случаях можно говорить «цифра», а когда — «число». Если в разговоре упоминаются официальные показатели, то уместно говорить слово «цифра». Это могут быть, например, статистические данные.

Понятие «цифры» широко распространено в нумерологии. Нумерологи используют это понятие как знак, который способен влиять на судьбу человека. Они наделяют его мистическими свойствами. Например, нумерологи уверены в том, что некоторые цифры притягивают удачу.

Число употребляют тогда, когда нужно назвать количество чего-либо, или когда речь идет о календарной дате или дне месяца. В русском языке для употребления этого понятия применяются порядковые числительные.

По сравнению с первобытными и древними обществами, у понятия «цифра» расширилась область употребления. Теперь это — не только в математике. Сейчас люди говорят о цифровом телевидении, цифровом формате. Так же и с числами — теперь они применяются, например, в информатике. Получается, что с развитием общества и науки развиваются и математические понятия. После прочтения всех математических и лингвистических тонкостей читатели знают, чем отличается число от цифры.

Готов узнать, чем отличаются цифры от чисел? Не будем тянуть единицу за чуб, а двойку за хвост, рассказываем!

Что такое цифра?

Чтобы разобраться в отличиях между числами и цифрами, для начала запомни несколько простых утверждений:

Цифры — это единицы счета от 0 до 9, остальные все — числа.

Числа состоят из цифр.

Цифры являются знаками, а каждое число — это количественная абстракция.

Слово «цифра» происходит от арабского «сифр» , что означает «ноль». Цифры — это знаки для записи чисел. Обычно цифра означает один из следующих графических знаков: 0 1 2 3 4 5 6 7 8 9. Это так называемые арабские цифры.

Однако кроме арабской существует много других систем счисления, и они настолько отличаются, что число одной из них может оказаться цифрой в другой.

Римские цифры, например, записывают так: I V X L C D M. Поэтому арабское число «10» в римской системе счисления будет цифрой «Х» (десять), которая обозначается латинской буквой.

Шестнадцатеричные цифры, которые чаще всего используют разработчики компьютеров и программисты, на письме обозначают следующим образом: 0 1 2 3 4 5 6 7 8 9 A B C D E F. В этой системе счисления арабские цифры от 0 до 9 соответствуют значениям от нуля до девяти, а шесть латинских букв A, B, C, D, E, F соответствуют значениям от десяти до пятнадцати.

Каждое число шестнадцатеричной системы счета записывается с помощью 16-ти цифр.

В некоторых языках (древнегреческом, церковнославянском, иврите) существует система записи чисел буквами.

Как написать цифры на иврите.

Что называют числом?

Число — это один из основных объектов , который используют для подсчета, измерения и маркировки.

Символы, применяемые для обозначения чисел, называются цифрами .

Кроме использования цифр при счете и измерении, ими пользуются для маркировки (к примеру, телефонный номер) и упорядочения (например, универсальный идентификационный номер ISBN).

Подытоживая выше сказанное, делаем вывод, что число может указывать на символ, слово или математическую абстракцию.

Но интересно, что кроме практического применения, числа имеют также культурное значение. На Западе, например, число 13 считают несчастливым, а «миллион» часто может означать просто «много».

Всем людям с раннего детства знакомы цифры, с помощью которых ведется счет предметов. Их всего десять: от 0 до 9. Потому и система исчисления называется десятичной. С помощью них можно записать совершенно любое число.

Тысячелетиями люди применяли свои пальцы для обозначения чисел. Сегодня десятичная система используется повсюду: для измерения времени, при продаже и покупке чего-либо, при различных расчетах. Каждый человек имеет собственные числа, например, в паспорте, на кредитной карте.

По вехам истории

Люди настолько привыкли к цифрам, что даже не задумываются об их важности в жизни. Наверное, многие слышали, что цифры, которые используются, называются арабскими. Некоторым это объяснили в школе, а кто-то узнал случайно. Так почему цифры называются арабскими? Какова их история?

А она является очень запутанной. Нет достоверно точных фактов об их происхождении. Известно точно, что благодарить стоит древних астрономов. Из-за них и их расчетов люди сегодня имеют числа. Астрономы из Индии где-то между II и VI веками познакомились со знаниями греческих коллег. Оттуда была взята шестидесятиричная и круглый нуль. Затем греческая была объединена с китайской десятичной системой. Индусы стали обозначать цифры одним знаком, и их способ быстро разлетелся по всей территории Европы.

Почему цифры называются арабскими?

С восьмого по тринадцатый век восточная цивилизация активно развивалась. Особенно это было заметно в сфере науки. Огромное внимание было уделено математике, астрономии. То есть в почете была точность. По всему Ближнему Востоку главным центром науки и культуры считался город Багдад. А все потому, что он находился географически очень выгодно. Арабы не постеснялись воспользоваться этим и активно перенимали много полезного от Азии и Европы. Багдад часто собирал видных ученых с этих континентов, которые передавали друг другу опыт и знания, рассказывали о своих открытиях. При этом индусы и китайцы пользовались своими системами исчисления, которые состояли всего из десяти символов.

Изобрели совсем не арабы. Они просто высоко оценили преимущества их, по сравнению с римской и греческой системами, которые считались самыми совершенными в мире на тот момент. Но ведь гораздо удобнее отображать бесконечно лишь десятью знаками. Главным достоинством арабских цифр является не удобство написания, а сама система, так как она является позиционной. То есть положение цифры влияет на значение числа. Так люди определяют единицы, десятки, сотни, тысячи и так далее. Неудивительно, что и европейцы взяли это на вооружение и переняли арабские цифры. Это какие же мудрые ученые были на Востоке! Сегодня это кажется очень удивительным.

Написание

Как выглядят арабские цифры? Раньше они были составлены из обрывистых линий, где число углов сопоставлялось с величиной знака. Скорее всего, арабские математики высказали мысль о том, что можно связать количество углов с числовым значением цифры. Если посмотреть на старинное написание, то видно, какую величину имеют арабские цифры. Это какие же способности были у ученых в такое древнее время?

Итак, ноль не имеет углов в написании. Единица включает в себя лишь один острый угол. Двойка содержит пару острых углов. Тройка имеет три угла. Ее правильное арабское написание получается при вычерчивании почтового индекса на конвертах. Четверка включает в себя четыре угла, последний из которых создает хвостик. У пятерки пять прямых углов, а у шестерки, соответственно, шесть. При правильном старом написании семерка состоит из семи углов. Восьмерка — из восьми. А девятка, нетрудно догадаться, из девяти. Вот почему цифры называются арабскими: ими было придумано оригинальное начертание.

Гипотезы

Сегодня нет однозначного мнения насчет формирования написания арабских цифр. Ни один ученый не знает, почему определенные цифры выглядят именно таким образом, а не как-то по-другому. Чем руководствовались древние ученые, придавая цифрам формы? Одной из самых правдоподобных гипотез является та самая, с количеством углов.

Конечно, с течением времени все углы у цифр сглаживались, они постепенно приобрели привычный для современного человека облик. И уже огромное число лет арабские цифры по всему миру используются для обозначения чисел. Удивительно, что всего десятью символами можно передать невообразимо большие значения.

Итоги

Еще одним ответом на вопрос о том, почему цифры называются арабскими, является тот факт, что само слово «цифра» также имеет арабское происхождение. Математики перевели слово индусов «сунья» на родной язык и получилось «сифр», что уже похоже на произносимое в наши дни.

Это все, что известно о том, почему цифры называются арабскими. Возможно, современные ученые еще сделают какие-либо открытия на этот счет и прольют свет на их возникновение. А пока люди довольствуются только этой информацией.

Термин «число» возникло в древние времена, когда у людей впервые получилось посчитать предметы. Первое время счёт вёлся на пальцах. Затем начали считать по зарубками на палочках. Со временем люди стали понимать числа свободно от предметов и лиц, которые могли подвергаться счёту. Поэтому у славян возникло слово «число».

В XV веке в европейских странах начали распространяться специальные знаки, с помощью которых обозначались числа (числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0). Это было изобретением индейцев, а позже они появились в Европе благодаря арабам (арабские цифры). Почему они именно такие, какие есть?

Если посмотреть внимательно на эти арабские числа, то можно заметить, что каждое число соответствует количеству углов, которое можно найти на этой цифре. У числа 0 нет углов, у числа 1 — один угол, а у 9 — все девять углов.

С середины ХVIII века у слова цифра появилось новое значение — знак числа.

В чем разница между цифрой и числом?

Итак, у слова число и цифра различное значение и происхождение. Число — единица счёта, которая выражает количество (один дом, два дома, и т.д.). Цифра — знак (символ), который обозначает значение числа. Для записи чисел используются арабские цифры — 1, 2, 3… 9, иногда и римские — I, II, III, IV, V и т.д.

В разговоре слова число и цифра заменяют друг друга. Например, под числом мы понимаем не только величину, но и знак, выражающий её.

Названия и последовательность натуральных чисел от 1 до 20

Числа 1,2,3,4,5,6,7,8,9,0, которые используются при счёте- это натуральные числа. С помощью цифр 0,1,2,3,4,5,6,7,8,9 можно записать натуральное число. Такая запись чисел называется десятичной. В каждом классе присутствует три разряда.

  • Приведём ниже таблицу разрядов.

Классы Миллиарды Миллионы Тысячи Единицы

Разряд Сотни Десятки Единицы Сотни Десятки Единицы Сотни Десятки Единицы Сотни Десятки Единицы

1-е число 2 0 0 3 2 4 0 6 0 0 8 1

2-е число 4 7 0 0 0 0 2 0 2 3 0 0

3-е число 5 0 0 1 0 0 0 3 1 0 9 0

Вот так читаются некоторые числа:

  • 1) десять миллиардов тридцать два миллиона четыреста шестьдесят девять тысяч восемь;
  • 2) четыреста семьдесят миллиардов сто тридцать тысяч триста;
  • 3) пять миллиардов три миллиона триста десять.

Существуют и такие классы: класс триллионов, класс квадриллионов, класс квинтиллионов.

Сравнение натуральных чисел

Сравнить два натуральных числа- значит установить, какое из них больше (меньше) другого. Результат сравнения записывается в виде неравенства с помощью знаков > (больше) и

Все о шторах. Дизайн, оформление, идеи

Чем отличается число от цифры для детей. Разница между цифрой и числом

Невозможно представить себе жизнь без счёта. В обиходе каждый из нас встречает и цифры, и числа ежедневно, даже не задумываясь, где работает с цифрами, а где с числами, и в чём их отличие.

Определение цифры следующее: знак, принятый и используемый для обозначения количества (выраженного в числовом эквиваленте). А число – это выражение количественных характеристик в удобном виде, посредством цифр. Отсюда два вывода: числа состоят из цифр и цифра обладает знаковыми свойствами (обусловленность, узнаваемость, неизменяемость, и т.д.). Числа также обладают знаковыми свойствами, так как это некая абстракция, однако они обладают ими лишь потому, что состоят из цифр. Но цифра не только используется нами, как составляющее числа, но и как самостоятельный аналог числа, если речь идёт о предметах в количестве от одного до девяти включительно (так как цифр 10 – от нуля до девяти). Данные признаки применимы не только к арабским цифрам, но и к римским. Аналогично I V X L C D M – это римские цифры, а вот V I I I – это римское число, хотя понятийно в другой системе счисления ему соответствует арабская цифра 8.

Выводы сайт

  1. Цифры – это единицы счёта от 0 до 9, остальное – числа.
  2. Числа состоят из цифр.
  3. Цифры – это знаки, а числа – это количественная абстракция.
  4. Цифры и числа различных систем счисления настолько не совпадают, что число одной системы может оказаться цифрой другой, а всё потому, что это отвлечённые, выдуманные человеком понятия.

Можно провести аналогию между цифрами, числами, буквами и словами. Все обозначаются буквами. Есть слова, состоящие из нескольких букв, и слова, состоящие только из одной , например, (о, у) или союзы (а, и).

Аналогично, числа состоят из цифр и обозначаются ими. Число 1 состоит из цифры 1. Число 200 состоит из цифр 2 и 0. Число 25 состоит из двух цифр: 2 и 5. Номер мобильного телефона 9876543210 состоит из десяти цифр.

Цифра — или графический знак, с помощью которого записывается число.

Однозначные числа можно перепутать с цифрами. Чтобы понять, что перед вами, число или цифра, обратитесь к контексту.

Числа можно складывать, делить и проводить с ними другие математические операции. Этого нельзя делать с цифрами. Цифрами можно обозначить что-либо, например, уравнение.

Лингвистические различия

Если речь идет об официальных показателях, то в речи употребляется слово «цифра». Например, можно говорить о цифрах уровня безработицы, инфляции или торговли. В этом смысле слово «цифра» близко к понятиям « » или «данные».

Понятие «цифра» используется в нумерологии, как знак, влияющий на судьбу. Например, цифры в дате рождения указывают на характеристики человека. Каждая цифра при этом наделяется особым мистическим смыслом. Также считается, что некоторые цифры способны приносить удачу.

Слово «число» в речи чаще всего употребляется в смысле «количество». Например, можно назвать точное число жертв после аварии.

Еще одно «число» — это календарный день или дата. Также это понятие относится ко дню месяца. При этом в используются порядковые числительные. Так, можно сказать, что сегодня двадцать четвертое апреля две тысячи четырнадцатого года или двадцать четвертое число. Слово «число» в значении «дата» употребляется в разговорной речи.

Также слово «число» используется в смысле «совокупность чего-либо» и «сумма». Например, результатом уравнения 4+5=9 будет число 9, оно же сумма 4 и 5.

Наши дети каждый день используют арабские числа и хорошо их знают. Но иногда, читая книгу или глядя на циферблат часов, они наталкиваются на какие-то непонятные для них значки – римские числа. Что написано, не зная, прочитать сложно, и одно-единственное число, написанное римскими числами, может серьезно сбить с толку.

Расскажите сыну или дочери про римские числа, откройте им целый интересный мир и придайте уверенности в себе.

Поиграйте с ребенком в игру. Расскажите ему, что когда-то давно на свете жили древние , которые придумали очень интересный способ считать то, что у них было. А были у них овцы и козы, они выращивали и продавали яблоки и груши, гончары делали красивую посуду, а ткачи – рулоны ткани. И чтобы всё это продавать и покупать, нужны были цифры. Вот такие цифры и были названы римскими.

А сначала они считали… правильно, на пальцах. Так появилась первая цифра — I. Покажите ребенку, числа 2 и 3, лучше всего для этого использовать счетные палочки. Потом покажите цифру V, сложив её из двух палочек, и спросите, на что она похожа (на ладонь). Теперь составьте цифру Х, сначала из палочек, а потом – показав две ладони вместе, сложив их «песочными часами».

А теперь расскажите ему, как римляне составляли 4 (5-1, палочку клали слева), и 6 (5+1, палочка справа). Получилось? Теперь пусть ребенок подумает, как составить число 11. А 9? А 12?

Вот несколько веселых заданий, которые помогут закрепить новые знания:

1) Найдите в доме несколько часов и определите, какие у них цифры, римские или арабские. Если в доме нет часов с римскими цифрами, подойдут фотографии или картинки.

2) Если вы уже читаете книги по истории, попробуйте найти любое число, записанное римскими числами (так обычно записывают век), и прочитать. А если книг по истории под рукой нет, поищите в детских энциклопедиях.

3) Подумайте, как можно показать телом число V. А I? А Х?

4) Нарисуйте с ребенком дерево и попробуйте найти римские цифры среди его веточек. Наверняка вы найдете цифры V и I, а может, и что-то другое.

5) Поиграйте в «угадайку» — по очереди говорите друг другу числа до десяти и выкладывайте их счетными палочками.

6) А вот задание посложнее. Выложите счетными палочками и попросите найти ошибку.

Эти игры принесут ребенку удовольствие и помогут выучить новые для него цифры.

Как помочь своему ребенку, учащемуся в начальной школе, выучить таблицу умножения? Этот вопрос, пожалуй, волнует всех родителей младших школьников. Таблица умножения – обязательный материал в курсе математики, поэтому ее необходимо знать абсолютно всем. Чтобы помочь своему ребенку выучить ее легко и просто, нужно упростить ее для восприятия ребенком.

Таблица умножения для ребенка кажется слишком большой, поэтому первое, что вам необходимо сделать, это уменьшить ее объем. Объясните ребенку, что многие в таблице похожи, только в перестановке множителей, а вот ответ они имеют тот же самый. Покажите эти примеры, например, 3 х 4 = 4 х 3 = 12, 5 х 6 = 6 х 5 = 30 и т. д. Лучше всего подчеркнуть их в таблице, чтобы ребенок увидел, что таких примеров довольно много, а значит, учить придется гораздо меньше.

Предложите ребенку сначала выучить таблицу умножения на 1, затем на 10. Объясните, что примеры очень похожи, разница лишь в том, что к первой цифре приписывается ноль ( не 1, а 10), а также ноль приписывается в ответе. После того как ребенок их, можно приступить к дальнейшему изучению таблицы.

Дайте ребенку пройтись глазами по всем столбцам и попросите его отыскать примеры с одинаковыми множителями (2 х 2 = 4, 3 х 3 = 9 и т. д). Затем объясните ребенку, что если число умножили на 2, следовательно это число нужно взять 2 раза и сложить, если на 3, то одно и тоже число нужно взять три раза и сложить. Для восприятия ребенка это сложно, поэтому необходимо помочь ребенку с этим разобраться, используя, например, конфеты. Игра поможет в этом случае лучше всего.

Не стоит заставлять ребенка сидеть часами с таблицей и просто зубрить ее, лучше всего уделять ее изучению по 30-40 минут в день, но объяснять все действия. Повторять ее необходимо ежедневно до тех пор, пока ребенок ее твердо не усвоит.

Знать таблицу умножения очень важно для любого ребенка, ведь ее учат еще в начальной школе, и она становится базой для дальнейшего изучения арифметики. На вопрос, как выучить таблицу умножения за 5 минут, ответа, по сути, нет, поскольку выучить ее с нуля за такое короткое время практически невозможно. Но если вы хотите знать, как быстро выучить таблицу умножения с ребенком, нелишними будут некоторые советы.

Начинайте с умножения на 1 и 10

Всегда надо начинать изучение таблицы с умножения на 1 и 10. Ребенок быстро поймет, что умножение на 1 первый множитель не меняет. А если какое-то число умножается на 10, к нему просто приписывается 0.

Разобраться, как с ребенком выучить таблицу умножения на 2, тоже несложно. Школьник быстро разберется, что при умножении на 2 надо просто сложить умножаемое число с ним же. Так, 5х2 = 5+5 = 10, а 8х2 = 8+8 = 16. Аналогично запоминается умножение на 4 и 8.

Таблица умножения на 5 выучивается быстрее, если ребенок сразу уяснит, что в ответе всегда получится число, оканчивающееся на 0 или на 5. При умножении пяти на четное число, в ответе последней цифрой всегда будет 0, а при умножении на нечетное – 5.

Правило перемены мест сомножителей

Объясните ребенку, что от перемены мест сомножителей произведение меняться не будет. То есть если он умножит 5 на 2, получится то же самое, что и при умножении 2 на 5. Знание этого простого правила значительно сократит время обучения. Например, если школьнику понадобится решить, сколько будет 2х8, вместо того, чтобы складывать число 2 восемь раз, он сложит два раза число 8 и получит вот что: 2х8 = 8х2 = 8+8 = 16.

Ключевая диагональ таблицы

Квадраты чисел 2х2, 3х3 и так далее до 10х10 – это ключевая диагональ таблицы умножения. Если ребенок запомнит, сколько будет 2х2, 3х3 и так далее, вопрос, как легко выучить таблицу умножения, для вас станет еще более простым. Так, зная, что 8х8 = 64, ученик быстро посчитает, сколько будет 8х9. Получается следующее: 8х9 = 8х8 + 8 = 72.

А как быстро выучить таблицу умножения на 9? Запомнив умножение чисел на 10, ребенок легко сможет выучить и умножение на 9. Так, чтобы решить, сколько будет 7х9, достаточно будет умножить 7 на 10, а затем отнять 7. Получается: 7х9 = 7х10 – 7 = 63.

Выучить таблицу умножения мало, надо еще запомнить ее. Помочь в запоминании вы сможете, развесив ярко оформленные таблицы умножения в разных местах: на холодильнике, на двери детской (со стороны детской), возле письменного стола и т.д.

Также важно закреплять полученные знания в игровой форме. Сделайте красочное лото. Для этого надо расчертить квадраты на листах бумаги, куда будут вписываться ответы из таблицы умножения, а также сделать отдельные карточки с примерами. Ребенок достает карточку с примером, ищет ответ на своем листе и зачеркивает квадрат, если ответ правильный. Так продолжается до тех пор, пока все квадратики не будут перечеркнуты. А карточки с неправильными ответами можно будет отложить до следующей игры и начать с них.

При подготовке к школе родителям приходится активно заниматься с ребенком. Для поступления во многие образовательные учреждения дети уже должны сдавать специальный экзамен. Подразумевается, что к 6-7-летнему возрасту ребенку следует знать такие основные вещи, как цифры и буквы; а порой необходимо даже уметь читать.

Для того чтобы быстро выучить алфавит , необходимо иметь какие-то наглядные пособия и . Будет полезно повесить несколько постеров с изображением азбуки и привлекать внимание ребенка к забавным . Можно нарисовать плакаты с буквами алфавит а самостоятельно на ватмане.

Чтобы быстрее и эффективнее выучить с ребенком азбуку, можно купить или сделать самому карточки с буквами. Как правило, в покупных наборах много разных изображений для одной и той же буквы, и ребенку будет веселее искать среди них изучаемую. Это также внесет разнообразие в уроки.

Быстрее выучить алфавит помогут песенки. Можно придумать свой мотив, «наложив» на него буквы азбуки, или найти в интернете — ввести в любом поисковике «песенки про алфавит ». Распевайте песни с ребенком, имея перед глазами азбуку. В интернете также предлагаются интересные видеоуроки по изучению алфавит а.

Чтобы лучше запоминать буквы, можно делать их самим. Например, смастерить из пластелина, глины, вырезать из цветной бумаги или картона. В магазине легко найти популярную гипсовую массу с буквами и забавными животными. Сначала слепить — потом раскрасить.

Термин «число» возникло в древние времена, когда у людей впервые получилось посчитать предметы. Первое время счёт вёлся на пальцах. Затем начали считать по зарубками на палочках. Со временем люди стали понимать числа свободно от предметов и лиц, которые могли подвергаться счёту. Поэтому у славян возникло слово «число».

В XV веке в европейских странах начали распространяться специальные знаки, с помощью которых обозначались числа (числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0). Это было изобретением индейцев, а позже они появились в Европе благодаря арабам (арабские цифры). Почему они именно такие, какие есть?

Если посмотреть внимательно на эти арабские числа, то можно заметить, что каждое число соответствует количеству углов, которое можно найти на этой цифре. У числа 0 нет углов, у числа 1 — один угол, а у 9 — все девять углов.

С середины ХVIII века у слова цифра появилось новое значение — знак числа.

В чем разница между цифрой и числом?

Итак, у слова число и цифра различное значение и происхождение. Число — единица счёта, которая выражает количество (один дом, два дома, и т.д.). Цифра — знак (символ), который обозначает значение числа. Для записи чисел используются арабские цифры — 1, 2, 3… 9, иногда и римские — I, II, III, IV, V и т.д.

В разговоре слова число и цифра заменяют друг друга. Например, под числом мы понимаем не только величину, но и знак, выражающий её.

Названия и последовательность натуральных чисел от 1 до 20

Числа 1,2,3,4,5,6,7,8,9,0, которые используются при счёте- это натуральные числа. С помощью цифр 0,1,2,3,4,5,6,7,8,9 можно записать натуральное число. Такая запись чисел называется десятичной. В каждом классе присутствует три разряда.

  • Приведём ниже таблицу разрядов.

Классы Миллиарды Миллионы Тысячи Единицы

Разряд Сотни Десятки Единицы Сотни Десятки Единицы Сотни Десятки Единицы Сотни Десятки Единицы

1-е число 2 0 0 3 2 4 0 6 0 0 8 1

2-е число 4 7 0 0 0 0 2 0 2 3 0 0

3-е число 5 0 0 1 0 0 0 3 1 0 9 0

Вот так читаются некоторые числа:

  • 1) десять миллиардов тридцать два миллиона четыреста шестьдесят девять тысяч восемь;
  • 2) четыреста семьдесят миллиардов сто тридцать тысяч триста;
  • 3) пять миллиардов три миллиона триста десять.

Существуют и такие классы: класс триллионов, класс квадриллионов, класс квинтиллионов.

Сравнение натуральных чисел

Сравнить два натуральных числа- значит установить, какое из них больше (меньше) другого. Результат сравнения записывается в виде неравенства с помощью знаков > (больше) и

Чем цифры отличаются от чисел: отличия и виды. Разница между цифрой и числом

Доктор филологических наук Наталия Черникова

Понятие о числе зародилось в глубокой древности, когда человек научился считать предметы: два дерева, семь быков, пять рыб . Сначала счёт вели на пальцах. В разговорной речи мы до сих пор иногда слышим: «Дай пять!», то есть подай руку. А раньше говорили: «Дай пясть!» Пясть — это рука, а на руке пять пальцев. Когда-то слово пять имело конкретное значение — пять пальцев пясти, то есть руки.

Позднее вместо пальцев для счёта начали использовать зарубки на палочках. А когда возникла письменность, для обозначения чисел стали употреблять буквы. Например, у славян буква А означала число «один» (Б не имело числового значения), В — два, Г — три, Д — четыре, Е — пять.

Постепенно люди стали осознавать числа независимо от предметов и лиц, которые могли подвергаться счёту: просто число «два» или число «семь». В связи с этим у славян появилось слово число . В значении «счёт, величина, количество» его начали употреблять в русском языке с ХI века. Наши предки использовали слово число и для указания на дату, год. С ХIII века оно стало обозначать ещё и дань, подать.

В старину в книжном русском языке наряду со словом число имело хождение существительное чисмя , а также прилагательное чисменый . В ХVI веке появился глагол числити — «считать».

Во второй половине ХV века в европейских странах получили распространение специальные знаки, обозначающие числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Их изобрели индийцы, а в Европу они попали благодаря арабам, поэтому и получили название арабские цифры .

В нашей стране арабские цифры появились в Петровскую эпоху. В то же время в русский язык вошло слово цифра . Арабское по происхождению, оно тоже пришло к нам из европейских языков. У арабов первоначальное значение слова цифра — это нуль, пустое место. Именно в этом значении существительное цифра вошло во многие европейские языки, в том числе в русский. С середины ХVIII века слово цифра приобрело новое значение — знак числа.

Совокупность цифр в русском языке называлась цифирь (в старой орфографии цыфирь). Дети, изучавшие счёт, говорили: учу цифирь , пишу цифирь . (Вспомните учителя по фамилии Цыфиркин из комедии Дениса Ивановича Фонвизина «Недоросль», который обучал нерадивого Митрофанушку цифири , то есть арифметике.) При Петре I в России открыли цифирные школы — начальные государственные общеобразовательные учебные заведения для мальчиков. В них кроме других дисциплин детям преподавали цифирную науку — арифметику, математику.

Итак, слова число и цифра различаются и по значению и по происхождению. Число — единица счёта, выражающая количество (один дом, два дома, три дома и т.д.). Цифра — знак (символ), обозначающий значение числа. Для записи чисел мы используем арабские цифры — 1, 2, 3… 9, 0, а в некоторых случаях и римские — I, II, III, IV, V и т.д.

В наши дни слова число и цифра употребляются и в других значениях. Например, когда мы спрашиваем «Какое сегодня число?», то имеем в виду день месяца. Сочетания «в том числе », «из числа кого-нибудь», «в числе кого-то» обозначают состав, совокупность людей или предметов. А если мы доказываем что-то с цифрами в руках , то обязательно используем числовые показатели. Словом цифра называют также денежную сумму (цифра дохода, цифра гонорара ).

В разговорной речи слова число и цифра часто заменяют друг друга. Например, числом мы называем не только величину, но и знак, который её выражает. Об очень больших в числовом отношении величинах говорят астрономические числа или астрономические цифры .

Слово количество появилось в русском языке в XI веке. Оно пришло из старославянского языка и образовано от слова колико — «сколько». Существительное количество употребляется в применении ко всему, что поддаётся счёту и измерению. Это могут быть люди или предметы (количество гостей, количество книг ), а также количество вещества, которое мы не считаем, а измеряем (количество воды, количество песка ).

Всем людям с раннего детства знакомы цифры, с помощью которых ведется счет предметов. Их всего десять: от 0 до 9. Потому и система исчисления называется десятичной. С помощью них можно записать совершенно любое число.

Тысячелетиями люди применяли свои пальцы для обозначения чисел. Сегодня десятичная система используется повсюду: для измерения времени, при продаже и покупке чего-либо, при различных расчетах. Каждый человек имеет собственные числа, например, в паспорте, на кредитной карте.

По вехам истории

Люди настолько привыкли к цифрам, что даже не задумываются об их важности в жизни. Наверное, многие слышали, что цифры, которые используются, называются арабскими. Некоторым это объяснили в школе, а кто-то узнал случайно. Так почему цифры называются арабскими? Какова их история?

А она является очень запутанной. Нет достоверно точных фактов об их происхождении. Известно точно, что благодарить стоит древних астрономов. Из-за них и их расчетов люди сегодня имеют числа. Астрономы из Индии где-то между II и VI веками познакомились со знаниями греческих коллег. Оттуда была взята шестидесятиричная и круглый нуль. Затем греческая была объединена с китайской десятичной системой. Индусы стали обозначать цифры одним знаком, и их способ быстро разлетелся по всей территории Европы.

Почему цифры называются арабскими?

С восьмого по тринадцатый век восточная цивилизация активно развивалась. Особенно это было заметно в сфере науки. Огромное внимание было уделено математике, астрономии. То есть в почете была точность. По всему Ближнему Востоку главным центром науки и культуры считался город Багдад. А все потому, что он находился географически очень выгодно. Арабы не постеснялись воспользоваться этим и активно перенимали много полезного от Азии и Европы. Багдад часто собирал видных ученых с этих континентов, которые передавали друг другу опыт и знания, рассказывали о своих открытиях. При этом индусы и китайцы пользовались своими системами исчисления, которые состояли всего из десяти символов.

Изобрели совсем не арабы. Они просто высоко оценили преимущества их, по сравнению с римской и греческой системами, которые считались самыми совершенными в мире на тот момент. Но ведь гораздо удобнее отображать бесконечно лишь десятью знаками. Главным достоинством арабских цифр является не удобство написания, а сама система, так как она является позиционной. То есть положение цифры влияет на значение числа. Так люди определяют единицы, десятки, сотни, тысячи и так далее. Неудивительно, что и европейцы взяли это на вооружение и переняли арабские цифры. Это какие же мудрые ученые были на Востоке! Сегодня это кажется очень удивительным.

Написание

Как выглядят арабские цифры? Раньше они были составлены из обрывистых линий, где число углов сопоставлялось с величиной знака. Скорее всего, арабские математики высказали мысль о том, что можно связать количество углов с числовым значением цифры. Если посмотреть на старинное написание, то видно, какую величину имеют арабские цифры. Это какие же способности были у ученых в такое древнее время?

Итак, ноль не имеет углов в написании. Единица включает в себя лишь один острый угол. Двойка содержит пару острых углов. Тройка имеет три угла. Ее правильное арабское написание получается при вычерчивании почтового индекса на конвертах. Четверка включает в себя четыре угла, последний из которых создает хвостик. У пятерки пять прямых углов, а у шестерки, соответственно, шесть. При правильном старом написании семерка состоит из семи углов. Восьмерка — из восьми. А девятка, нетрудно догадаться, из девяти. Вот почему цифры называются арабскими: ими было придумано оригинальное начертание.

Гипотезы

Сегодня нет однозначного мнения насчет формирования написания арабских цифр. Ни один ученый не знает, почему определенные цифры выглядят именно таким образом, а не как-то по-другому. Чем руководствовались древние ученые, придавая цифрам формы? Одной из самых правдоподобных гипотез является та самая, с количеством углов.

Конечно, с течением времени все углы у цифр сглаживались, они постепенно приобрели привычный для современного человека облик. И уже огромное число лет арабские цифры по всему миру используются для обозначения чисел. Удивительно, что всего десятью символами можно передать невообразимо большие значения.

Итоги

Еще одним ответом на вопрос о том, почему цифры называются арабскими, является тот факт, что само слово «цифра» также имеет арабское происхождение. Математики перевели слово индусов «сунья» на родной язык и получилось «сифр», что уже похоже на произносимое в наши дни.

Это все, что известно о том, почему цифры называются арабскими. Возможно, современные ученые еще сделают какие-либо открытия на этот счет и прольют свет на их возникновение. А пока люди довольствуются только этой информацией.

Термин «число» возникло в древние времена, когда у людей впервые получилось посчитать предметы. Первое время счёт вёлся на пальцах. Затем начали считать по зарубками на палочках. Со временем люди стали понимать числа свободно от предметов и лиц, которые могли подвергаться счёту. Поэтому у славян возникло слово «число».

В XV веке в европейских странах начали распространяться специальные знаки, с помощью которых обозначались числа (числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0). Это было изобретением индейцев, а позже они появились в Европе благодаря арабам (арабские цифры). Почему они именно такие, какие есть?

Если посмотреть внимательно на эти арабские числа, то можно заметить, что каждое число соответствует количеству углов, которое можно найти на этой цифре. У числа 0 нет углов, у числа 1 — один угол, а у 9 — все девять углов.

С середины ХVIII века у слова цифра появилось новое значение — знак числа.

В чем разница между цифрой и числом?

Итак, у слова число и цифра различное значение и происхождение. Число — единица счёта, которая выражает количество (один дом, два дома, и т.д.). Цифра — знак (символ), который обозначает значение числа. Для записи чисел используются арабские цифры — 1, 2, 3… 9, иногда и римские — I, II, III, IV, V и т.д.

В разговоре слова число и цифра заменяют друг друга. Например, под числом мы понимаем не только величину, но и знак, выражающий её.

Названия и последовательность натуральных чисел от 1 до 20

Числа 1,2,3,4,5,6,7,8,9,0, которые используются при счёте- это натуральные числа. С помощью цифр 0,1,2,3,4,5,6,7,8,9 можно записать натуральное число. Такая запись чисел называется десятичной. В каждом классе присутствует три разряда.

  • Приведём ниже таблицу разрядов.

Классы Миллиарды Миллионы Тысячи Единицы

Разряд Сотни Десятки Единицы Сотни Десятки Единицы Сотни Десятки Единицы Сотни Десятки Единицы

1-е число 2 0 0 3 2 4 0 6 0 0 8 1

2-е число 4 7 0 0 0 0 2 0 2 3 0 0

3-е число 5 0 0 1 0 0 0 3 1 0 9 0

Вот так читаются некоторые числа:

  • 1) десять миллиардов тридцать два миллиона четыреста шестьдесят девять тысяч восемь;
  • 2) четыреста семьдесят миллиардов сто тридцать тысяч триста;
  • 3) пять миллиардов три миллиона триста десять.

Существуют и такие классы: класс триллионов, класс квадриллионов, класс квинтиллионов.

Сравнение натуральных чисел

Сравнить два натуральных числа- значит установить, какое из них больше (меньше) другого. Результат сравнения записывается в виде неравенства с помощью знаков > (больше) и

© 2019 Пневмония, рак, бронхит, ларингит. Туберкулез

Ссылка на основную публикацию
Adblock
detector