7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теоретические основы механизма взрыва и горения

Основы механизмов горения и взрыва ch4. Теоретические основы механизма взрыва и горения

В основе современных представлений о механизме процесса горения лежат теории самовоспламенения , которые построены на трех видах механизма самовоспламенения: тепловом, автокаталитическитепловом и цепном самоускорении.

Причиной теплового самовоспламенения может быть разогрев реагирующих веществ теплотой реакции.Для этого необходим предварительный разогрев системы и достижение такого состояния, при котором приход тепла в результате реакции станет выше отвода тепла из зоны реакции. При этом условии начнется саморазгон реакции и произойдет самовоспламенение.

Явление, при котором каталитическое действие на реакцию оказывает какой-либо из ее продуктов, называют автокатализом .Особенность этой реакции заключается в том , что она идет при непременной возрастающей концентрации катализатора. Для того,чтобы развивалась автокаталитическая реакция, необходимо либо превращение в конечный продукт, либо существование в начальный момент некоторого количества продукта для реакции в виде начальной «затравки».

Для автокаталитического самовоспламенения характерен более длительный начальный период реакции, в течение которого ее скорость несоизмеримо мала и который далее сменяется периодом быстрого развития химического превращения, однако самоускорение происходит с самого начала реакции.При достижении критической скорости реакции дальнейшее самоускорение будет проходить не только в результате автокатализа, но и повышения температуры.

Цепное самовоспламенение имеет природу, отличную от теплового самовоспламенения. В случае ценных реакцийвыделение тепла происходит в результате разветвления реакционных цепей и накопления химически активных частиц.

К цепным относятся химические процессы, в которых в качестве промежуточных частиц выступают свободные радикалы, или, как их еще называют, активные частицы. Обладая свободными ненасыщенными связями и вступая во взаимодействие с исходными молекулами эти активные частицы вызывают разрыв одной из валентных связей этой молекулы и образуют новую активную частицу. Последняя, в свою очередь, вступает во взаимодействие с новой исходной молекулой, таким образом распространяется реакционная цепь и возникает цепная реакция.

В условиях промышленного производства под взрывом следует понимать быстрое неуправляемое высвобождение энергии, которое вызывает ударную волну, движущуюся на некотором расстоянии от источника.Взрыв может быть вызван :

детонацией конденсированного ВВ, быстрым сгоранием воспламеняющегося облака газа;

внезапным разрушением сосуда со сжатым газом или перегретой жидкостью;

смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т.д.

Источниками энергии при взрыве могут быть как химические, так и физические процессы.

Источником химического взрыва являются быстропротекающие экзотермические реакции взаимодействия горючих веществ с окислителями или термического разложения нестабильных соединений.

Физические взрывы возникают при смешивании горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при вливании расплавленного металла в воду). Испарение в этом случае протекает взрывным образом.

Способность веществ к взрывному процессу подчиняется законам термохимии , согласно которым, если в данной реакции сумма теплот образования продуктов меньше теплоты образования исходного соединения, то это вещество потенциально взрывоопасно.

Источниками энергии взрывов могут быть окислительно-восстановительные химические реакции, в которых воздух или кислород взаимодействуют с восстановителем. Окислительно-восстановительные реакции в этих условиях могут протекать с достаточно высокими скоростями, при которых генерируются ударные волны, способные вызвать ощутимые разрушения.

Ламинарное, дефлаграционное горение и детонация. Горение и взрыв веществ в разных агрегатных состояниях

В зависимости от скорости распространения пламени горение может быть дефлаграционным со скоростью несколько м/с,взрывным — порядка десятков и сотен м/с идетонационным — тысяч м/с.

При ламинарном горении распространение пламени происходит от каждой точки фронта по нормали к его поверхности, так же, как и распространение сферического пламени при центральном зажигании. Такое горение и скорость перемещения пламени по неподвижной смеси вдоль нормали к его поверхности называетсянормальным .

Скорость горения горючих веществ в смеси с воздухом для предельных углеводородов составляет 0,32-0,4 м/с, для водорода — 2,7 м/с. При столь малых скоростях распространения пламени образование ударной волны перед фронтом пламени не происходит .

При достижении скоростей распространения пламени, составляющих десятки и сотни метров в секунду, но не превышающих скорость распространения звука в данной среде (300-320 м/с), происходит взрывное, или дефлаграционное горение .

При взрывном горении продукты горения могут нагреваться до 1500-3000°С, а давление в закрытых системах увеличивается до 0,6-0,9 мПа. Применительно к случайным промышленным взрывам под дефлеграцией обычно понимают горение облака с видимой скоростью порядка 100-300 м/с, при которой генерируются ударные полны с максимальным давлением 20-100 кПа.

30кПа) достигается при скорости распространения пламени 150-200 м/с. В определенных условиях дефлаграционное (взрывное) горение может перейти в детонационный процесс , при котором скорость распространения пламени превышает скорость распространения звука и достигает 1-5 км/с. Пиковое давление, создаваемое при детонации, достигает 200 кПа. Большинство промышленных зданий разрушается при давлениях 25-30 кПа при внешних взрывах и 20-25 кПа — при внутренних.

При детонационном режиме горения облака большая часть энергии взрыва переходит в ударную волну ;при дефлаграционном горении переход энергии в ударную волну составляет примерно 30% , максимальный к.п.д. энергии взрыва парогазовых сред составляет примерно 40%.

В зависимости от агрегатного состояния исходного вещества и продуктов горения различают :

горение взрывчатых веществ;

При гомогенном горении исходные вещества и продукты горения находятся в одинаковом агрегатном состоянии.К этому типу относится горение газовых смесей (природного газа с окислителем — обычно кислородом воздуха),горение негазифицирующихся конденсированных веществ (например, термитов — смесей алюминия с оксидами различных металлов), а такжеизотермическое горение — распространение цепной разветвленной реакции в газовой смеси без значительного разогрева.

Горение взрывчатых веществ связано с переходом вещества из конденсированного состояния в газ. При этом на поверхности раздела фаз происходит сложный физико-химический процесс, при котором в результате химической реакции выделяются теплота и горючие газы, догорающие в зоне горения на некотором расстоянии от поверхности.

При гетерогенном горении исходные вещества находятся в разных агрегатных состояниях. Важнейшие технологические процессы гетерогенного горения — горение угля, металлов, сжигания жидких топлив и т.д. Процесс гетерогенного горения очень сложен, химическое превращение сопровождается дроблением горючего вещества и переходом его в газовую фазу в виде капель частиц, образованием оксидных пленок на частицах металла, турбулизацией и т.д.

Горение — сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения — выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества — перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О 2 в воздухе) О 2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при

Пожароопасные свойства материалов и веществ. Суть процесса горения. Теоретические основы механизма горения и взрыва

ТЕМА 4

Суть процесу горіння. Теоретичні основи механізму горіння та вибуху. Класифікація видів горіння. Повне і неповне згорання. Ламінарне і дефлаграційне горіння, вибух і детонація. Гомогенне та гетерогенне горіння.

Горение – химическая реакция окисления вещества,которая сопровождается выделением большого количества тепла и света с прогрессирующим самоускорением.

1) наличие горючего вещества;

3) наличие источника загорания (импульса).

Условия образования пламени – наличие образования смеси, в которой может протекать химическая реакция. При этом, количество тепла, выделяющегося при горении единицы веса горючего должно быть достаточным для существенного повышения температуры реагентов по сравнению с продуктами сгорания. Скорость химической реакции, т.е. количество вещества, реагирующего в единице объема в единицу времени, сильно возрастает с температурой, поэтому, при этих условиях наблюдается самоускорение реакции.

Горючее вещество – твердое, жидкое, газообразное вещество, способное гореть под действием огня. С уменьшением концентрации кислорода в воздухе уменьшается интенсивность горения. Однако, сжатый ацетилен, хлористый азот, озон горят и без доступа воздуха.

Горение происходит в движущей среде. Это движение может быть следствием самого процесса горения (свеча) или по принудительным причинам (газовая турбина).

Ламинарное горение – соседние слои жидкости равномерно скользят друг по другу.

Скорость движения пламени относительно исходной смеси зависит от природы от природы химической реакции и теплопроводимости газа. Процесс горения, при котором начальное и конечное состояние характеризуется точками A и B называется нормальным или дефлаграционным. Скорость распространения пламени при этом – несколько метров в секунду.

Взрывное горение – скорость распространения пламени достигает порядка десяти метров в секунду.

Взрыв – это горение вещества, сопровождающееся крайне быстрым выделением большого количества энергии, вызывающего нагрев продуктов сгорания до высоких температур и резкое повышение давления.

Детонационное горение – скорость горение до 1000 м/c – импульс воспламенения передается от слоя к слою смеси не за счет теплопроводимости, а вследствие импульса давления.

В зависимости от свойств горючей смеси горение может быть гомогенным и гетерогенным. Если исходные вещества имеют одно агрегатное состояние (горение газов), то горение называют гомогенным.

Пожарная опасность различных веществ и материалов оценивается их способностью вызвать пожар и взрыв. Пожароопасными называют вещества, которые имеют повышенную пожарную опасность. Опасность возникновения взрыва и пожара в помещениях, где выделяются пары и газы горючих веществ и пыли, зависит от их концентрации в воздухе.

Если в воздухе возникает такая концентрация пыли, паров или газов, которая будет выше нижней границы воспламенения, то при наявности открытого источника огня произойдет взрыв, а за пределами верхней границы возгорания – будет горение.

Нижней и верхней границей взрыва называют соответственно наименьшую и наибольшую концентрацию паров, газов или пыли в воздухе, при которых существует вероятность взрыва смеси. Согласно ГОСТ 12.1.004 — 85 пожарная опасность веществ характеризуется их горючестью, возгоранием и взрывоопасностью.

Пожароопастносные вещества имеют такие обозначения:

НГ – негорючие вещества. Это такие вещества, которые не способны гореть в атмосфере воздуха обычного состава.

ТГ – тяжелогорючее вещество. Может гореть лишь под действием постороннего источника возгорания, но не способное самостоятельно гореть после его удаления.

ГВ – горючая жидкость. Это жидкость, которая горит самостоятельно после удаления источника возгорания. Температура вспышки выше 61 0 С в закрытом тигле или 66 0 С в открытом.

ЛВЖ – легковоспламеняющиеся жидкости. Самостоятельно горит после удаления источника возгорания с температурой вспышки не выше 61 0 С в закрытом тигле или 66 0 С – в открытом.

ГГ – горючий газ, который способен образовывать с воздухом воспламеняющиеся и взрывоопасные смеси при температуре не выше 55 0 С.

ВВ – взрывоопасное вещество, способное взрываться или детонировать без присутствия кислорода (О3, СНºСН, хлористый азот). Это могут быть также металлы, способные гореть в атмосфере хлора, парах серы или двуокиси углерода.

Пределы воспламенения паров ЛВЖ и ГЖ выражают температурными пределами. При этом нижнему и верхнему температурным пределам соответствуют нижний (НПВ) и верхний (ВПВ) концентрационный предел, выражаемый в объемных процентах.

Наиболее опасны жидкости с температурой вспышки не менее 15 0 С и широкими пределами воспламенение (сероуглерод имеет: Твсп = -43 0 С; НВП = 1 %; ВПВ = 50 %).

Одной из назначенных форм загорания, по причине, которой возникает процесс горения, является вспышка. Вспышка – быстротекущий процесс сгорания паров горючей жидкости, который происходит при их контакте с открытым источником огня. Воспламенение длительный процесс горения, возникающий от источника огня и длиться до тех пор, пока существует выделения паров из горючего вещества. Воспламенения происходит при температурах, которые больше температуры вспышки для ЛВЖ на 2…5 0 С, а для горючих на 5…30 0 С.

Класифікація рідин, що горять, на легкозаймисті (ЛЗР) і на горючі рідини (ГР) за температурою спалаху.

Классификация горючих веществ по взрыво- и пожароопасности:

– взрыво-пожароопасные: ГГ, нижний предел взрываемости которых 10% и менее к объему воздуха; жидкости с температурой вспышки паров до 28 0 С включительно при условии, что указанные выше газы и жидкости могут образовать взрывоопасные смеси в объеме, превышающем 5 % объема помещения; вещества, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом;

– ГГ, нижний предел взрываемости которых более 10 % к объему воздуха, жидкости с температурой вспышки паров от 28 0 С до 61 0 С включительно; жидкости, нагретые до температуры вспышки и выше; горючие пыли и волокна, нижний предел взрываемости которых 65 г/м 3 и менее к объему воздуха;

– пожароопасные: жидкости с температурой вспышки паров свыше 61 0 С, горючие пыли или волокна, нижний предел взрываемости которых более 65 г/м 3 к объему воздуха; вещества, способные гореть при взаимодействии с водой, кислородом воздуха или друг с другом, твердые сгораемые вещества и материалы.

– несгораемые вещества и материалы в горячем раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени;

– взрывоопасные: горючие газы без жидкой фазы и взрывоопасной пыли в таком количестве, что они могут образовать взрывоопасные смеси в объеме, превышающем 5 % объема помещения, и в котором по условиям техпроцесса возможен только взрыв (без последующего горения); вещества, способные (без последующего горения) при взаимодействии с водой, кислородом воздуха или друг с другом.

Взрывоопасность взвешенной горючей пыли можно охарактеризовать следующими параметрами:

– минимальной энергией поджигания;

– наличием (концентрацией) негорючей пыли;

– дисперсность самой пыли.

Самовоспламенение – процесс горения вещества, который возникает от окружающей температуры, но без контакта с открытым источником огня. Например, самовоспламенение горючих смесей от их сдавливания, когда температура смеси достигает определенного уровня.

Самовозгорание – процесс горения,который возникает от тепла, которое накопилось в веществе вследствие биологических или физико-химических процессов.

Система попередження пожеж. Система пожежного захисту. Система організаційно-технічних заходів.

Теория взрыва и горения

Изучение самовозгорания как резкого увеличения скорости экзотермических процессов в веществе, приводящего к возникновению очага горения. Определение причин и условий для процесса и веществ, склонных к нему. Отличие самовозгорания от самовоспламенения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Самовозгорание—резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения.

Самовозгорание веществ и материалов часто становится причиной пожара на промышленных объектах.

Выделение из всех горючих веществ, группы самовозгорающихся объясняется их повышенной опасностью по сравнению с другими горючими веществами и необходимостью проведения дополнительных профилактических мероприятий, в связи с чем уделяется особое внимание изучению этих процессов.

Все горючие вещества, находящиеся в соприкосновении с воздухом, при определенных температурах начинают окисляться. Этот процесс сопровождается выделением тепла. В некоторых случаях отвод выделяющегося тепла сильно ограничен, и при определенном соотношении скоростей выделения и отвода тепла, возможно самонагревание горючего материала. самовозгорание экзотермический очаг

Самонагревание некоторых веществ может происходить не только в результате окисления, но и от других экзотермических реакций (разложение), а также от ряда физических и биологических явлений.

Саморазогрев веществ может происходить по следующим причинам:

а) протекание химических экзотермических реакций

б) биологические процессы жизнедеятельности микроорганизмов (бактерии, растительные клетки и др.)

в) физические процессы с выделением тепла адсорбции и конденсация.

При определенных условиях, процесс самонагревания может привести к возникновению горения, аналогично как при явлении самовоспламенения.

Отличие самовозгорания от самовоспламенения заключается в следующем:

1. Самовозгорание происходит в твердых и конденсированных веществах, в то время как самовоспламенение в — газопаро-воздушных системах.

2. Процессы самонагревания при самовозгорании начинаются при «низких» температурах (до 70°С), а самовоспламенение происходит при относительно высоких (более 150°С)

3. Самовозгорание проходит через стадию тления.

4. При самовозгорании период индукции может проходить очень длительное время, при самовоспламенении же секунды

К самовозгоранию склонно большое количество веществ и материалов. Их делят на три группы:

1. вещества, самовозгорающиеся на воздухе. К этой группе относятся вещества: масла, жиры, белый фосфор, порошки металлов, сульфиды железа, ископаемое топливо, растительные продукты.

2. вещества, самовозгорающиеся при действии на них воды. К этой группе относятся вещества: щелочные металлы, гидриды щелочных металлов, карбиды щелочных металлов, карбид кальция, окись кальция, перекиси, силициды и гидросульфит натрия.

3. самовозгорающиеся смеси. В составе таких смесей обязательными компонентами являются окислитель и горючее вещество. Окислители: кислород сжатый, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцево-кислый калий, хромовый ангидрид, селитры, хлораты, перхлораты и хлорная известь. Горючие вещества: сахар, сера, глицерин, спирты и др.

Современная теория теплового самовозгорания веществ и материалов базируется на представлении о блуждающих «горячих точках», которые формируются по определенным закономерностям. Представим дисперсную систему ограниченных размеров (кипы ваты, хлопка, мешки с рыбной мукой и т.п.). Система и окружающая среда имеют температуру То, а внутри ее образовалась небольшая зона, в которой начались окислительные процессы.

В результате окисления стала выделяться теплота, которая распространяется во все стороны (конвекцию учитывать не будем). Температура в реакционной зоне будет постепенно расти и достигнет значений, при которых начнутся процессы термической деструкции твердого материала с выделением продуктов разложения.

Схема возникновения «горячей точки»

Последние будут конденсироваться и адсорбироваться на поверхности вещества. Обязательным условием такого процесса является наличие кислорода и развитой поверхности горючего вещества. Чем больше дисперсность материала, тем больше его удельная поверхность, а значит и выше скорость процессов окисления, разложения, конденсации и адсорбции, в результате которых выделяется и накапливается внутри материала теплота:

где q+ тепловой эффект реакций окисления;

qдестр тепловой эффект реакций термической деструкции;

qконд теплота конденсации продуктов разложения;

qадc теплота адсорбции продуктов реакций.

Если скорость теплоотвода будет ниже скорости тепловыделения в зоне реакций, то начнется процесс самонагревания внутри объема вещества. С увеличением температуры данный процесс будет ускоряться за счет увеличения скорости реакций и интенсивности тепловыделения. Если кислорода в зоне реакций достаточно, а отвод теплоты в окружающую среду затруднен, то непрерывный процесс самонагревания может перейти в качественно новую стадию самовозгорание. Процессы самонагревания и самовозгорания развиваются, как правило, в диффузионной области, и скорость их зависит от скорости поступления (диффузии) кислорода снаружи в зону реакции. Самовозгоранию подвержены легкоокисляющиеся пористые и волокнистые вещества и материалы, имеющие в себе большой запас молекулярного кислорода.

Структура горючих материалов по объему неоднородна: разная плотность упаковки, плотность, влажность и т.д. Это приводит к тому, что в большом объеме материала зона реакции будет перемещаться с разной скоростью, в разных направлениях. В той части, где теплоты отводится меньше, температура будет выше. Этот участок будет как бы подвижным тепловым центром реакционной зоны, ееблуждающей «горячей точкой». Максимальная температура будет наблюдаться в наиболее заглубленной части материала.

Первоначальный период самовозгорания часто бывает незаметен снаружи, так как продукты термоокислительной деструкции полностью адсорбируются внутри вещества. В объеме материала, как правило, возникают одновременно несколько «горячих точек», которые по мере развития процесса сливаются друг с другом с образованием глухих, не сообщающихся с поверхностью вещества прогаров.Обнаружение таких прогаров при исследовании пожара является однозначным признаком его возникновения в результате самовозгорания.

Причиной возникновения «горячих точек» в некоторых материалах растительного происхождения являютсямикробиологические процессы.В органических веществах, подобных зерну, шерсти, рыбной муке, сену, торфу и т.п.,вследствие жизнедеятельности микроорганизмоввыделяется теплота, которая аккумулируется в объеме материала. При достижении температуры 60-70 °С микроорганизмы погибают. Однако к этому времени уже формируются блуждающие «горячие точки», и начинается процесс теплового самовозгорания.

Анализ приведенного выше выражения показывает, что условия самовозгорания зависят от химической природы материала, его формы и массы, начальных и граничных условий теплообмена с окружающей средой. Для каждого сыпучего или волокнистого материала существуют свои критические условия самовозгорания. Расчетные методы их определения отсутствуют, хотя и накоплен большой экспериментальный материал, на базе которого разрабатываются мероприятия по предотвращению пожаров от самовозгорания. Для этого, прежде всего, необходимы знания параметров пожарной опасности веществ и материалов в конкретных условиях их переработки, хранения и транспортировки. К этим параметрам относятся температура самонагревания, температура тления и условия теплового самовозгорания. Указанные параметры определяются по специальным экспериментальным методикам, изложенным в ГОСТе 12.1.044.

Размещено на Allbest.ru

Подобные документы

Физико–химические основы горения и взрыва. Тепловая, цепная и диффузная теории горения веществ, взрывчатые вещества. Свойства твердых топлив и продуктов сгорания, термодинамические свойства продуктов сгорания. Виды пламени и скорость его распространения.

курс лекций [1,7 M], добавлен 05.01.2013

Определение зависимости скорости горения баллистических и смесевых порохов от давления, химической структуры взрывчатых веществ. Анализ влияния положительных и отрицательных катализаторов на горение индивидуальных взрывчатых веществ различных классов.

монография [37,5 K], добавлен 19.08.2010

Определение теплоты сгорания для газообразного топлива как суммы произведений тепловых эффектов составляющих горючих газов на их количество. Теоретически необходимый расход воздуха для горения природного газа. Определение объёма продуктов горения.

контрольная работа [217,6 K], добавлен 17.11.2010

Философская и физическая суть квантованности распределения энергии спектра на основе цветных солитонов; определение частотного фрактала, массы, энергии, температуры, импульса. Внутриприродная информационная система; феномен «спонтанного самовозгорания».

научная работа [232,6 K], добавлен 07.05.2012

Методика расчета горения топлива на воздухе: определение количества кислорода воздуха, продуктов сгорания, теплотворной способности топлива, калориметрической и действительной температуры горения. Горение топлива на воздухе обогащённым кислородом.

курсовая работа [121,7 K], добавлен 08.12.2011

Основы теории диффузионного и кинетического горения. Анализ инновационных разработок в области горения. Расчет температуры горения газов. Пределы воспламенения и давления при взрыве газов. Проблемы устойчивости горения газов и методы их решения.

курсовая работа [794,4 K], добавлен 08.12.2014

Определение объемного состава, удельной газовой постоянной, плотности, средней молярной массы и объема смеси. Условия воспламенения горючего материала в результате теплообмена излучением. Коэффициент теплообмена между продуктами горения и поверхностью.

контрольная работа [164,7 K], добавлен 04.03.2012

Схема устройства котла пульсирующего горения. Общий вид камеры сгорания. Технические характеристики котлов. Перспективные разработки НПП «Экоэнергомаш». Парогенератор пульсирующего горения с промежуточным теплоносителем паропроизводительностью 200 кг.

презентация [153,2 K], добавлен 25.12.2013

Физико-химические основы горения, его основные виды. Характеристика взрывов как освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени, его типы и причины. Источники энергии химических, ядерных и тепловых взрывов.

контрольная работа [17,8 K], добавлен 12.06.2010

Полезная тепловая нагрузка печи. Расчет процесса горения топлива в печи. Коэффициент избытка воздуха. Построение диаграммы продуктов сгорания. Тепловой баланс процесса горения. Подбор котла-утилизатора. Расчет испарительной поверхности, экономайзера.

курсовая работа [1,1 M], добавлен 03.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Теоретические основы горения

По современным теоретическим представлениям горение – быстропротекающая химическая реакция окисления, сопровождающаяся интенсивным выделением тепловой энергии, резким повышением температуры и излучением. Видимое горение называют пламенем. Соответственно пламя – газообразная среда, в которой происходит горение. Обычно горение происходит в воздухе, и горючие компоненты топлива окисляются кислородом воздуха. Горение газов – гомогенный процесс, а жидкого и твердого топлива – гетерогенный. Для протекания процесса горения необходимы следующие условия:

– горючий газ и воздух должны вступить в физический контакт и смесеобразование;

– смесь воздуха и газа должна находиться в концентрационных границах (пределах) воспламенения;

– должен быть создан источник воспламенения и обеспечена стабилизация фронта горения.

Процесс горения сложный физико-химический процесс, скорость которого определяется интенсивностью физических и химических явлений и особенностями их взаимодействия. К физике горения имеет самое тесное отношение вопросы статистической физики, теплообмена, гидродинамики и газодинамики.

В процессе горения химия неразрывно соединена с аэро- и термодинамикой. Под горением в широком смысле следует понимать химические и аэротермодинамические процессы, происходящие в движущейся или неподвижной химически активной газовой смеси.

Горение – один из важнейших для природы и человеческой практики физико-химических процессов. Все явления горения тесно связаны с представлениями и законами химической кинетики. Горение – сложный многофакторный процесс, включающий химическую кинетику, термодинамику, тепломассоперенос, газо- и гидродинамику течений. Высвобождение химической энергии при горении порождает градиенты давления, температуры и плотности. Эти градиенты в свою очередь, являются источниками процессов, которые приводят к переносу массы, импульса и энергии.

Основной вклад в создании современных представлений о цепном механизме реакций горения внесли академик Н.Н. Семёнов и его школа. За разработку теории цепных реакций Н.Н. Семёнову и английскому учёному С.Н. Хиншелвуду была присуждена Нобелевская премия. Согласно теории цепных реакций горение протекает в виде разветвлённых и неразветвлённых цепей, состоящих из элементарных актов превращений. В цепной реакции участвуют радикалы, атомы и другие неустойчивые промежуточные соединения. (Радикалы частицы с неспаренными электронами на внешних атомных или молекулярных орбиталях.) В качестве активных центров цепной реакции выступают радикалы, обычно радикалы водорода. Зарождение цепи начинается с эндотермического процесса образования активных центров:

Наиболее изученным является механизм горения водорода в кислороде, который состоит из следующих элементарных стадий (актов):

Н + О2 → ОН + Н2 → Н

О + Н2 → Н

ОН + Н2 → Н

Механизм горения метана представляет собой довольно сложную совокупность цепных реакций с образованием на отдельных стадиях стабильных и нестабильных промежуточных продуктов. Предполагаемый механизм цепного горения метана в кислороде при стехиометрическом соотношении следующий:

3. НСНО + ОН → НСО + Н2О

НСО + О2 → СО + О + ОН

НСНО + О → СО + Н2О

Ещё более сложный механизм горения метана в воздухе, особенно при отклонении от стехиометрического соотношения.

На скорость химических реакций горения оказывают влияние температура, природа (химическое строение), соотношение воздуха и топлива, давление и катализаторы. Зависимость скорости горения от различных факторов описывается уравнением Аррениуса:

(1.1)

где k0– предэкспоненциальный множитель (константа);

E – энергия активации, кДж/кмоль;

R – газовая постоянная, кДж/(кмоль· К);

Т – абсолютная температура, К;

С – концентрация реагирующих веществ.

На величину скорости горения существенное влияние оказывает температура. Повышение температуры примерно на 10 градусов приводит к увеличению скорости горения W в два раза.

Численное значение энергии активации Е для большинства газовых смесей лежит в пределах от 80 до 170 кДж/моль. Через величину Е проявляется влияние на скорость горения W природы реагирующих веществ.

С повышением давления скорость горения возрастает. В большинстве случаев сжигание газового топлива производится при атмосферном давлении, поэтому влияние давления на величину W не проявляется. В случае сжигания газового топлива в двигателях влияние давления существенно.

Воспламенение и горение топливовоздушных смесей происходит в определённых концентрационных границах. Наличие пределов горения (нижнего и верхнего) объясняется тепловыми потерями или тепловым балансом в зоне горения. Пределы воспламенения топливовоздушных смесей расширяются с повышением температуры. Влияние давления на пределы воспламенения носит сложный характер.

Возникшее пламя или фронт горения самопроизвольно распространяется в объёме газовоздушной смеси. Скорость нормального распространения пламени, т.е. в направлении перпендикулярном к поверхности фронта горения в каждой его точке, зависит от физико-химических характеристик смеси и от её гидравлического режима (неподвижный, ламинарный и турбулентный). Для расчета нормальной скорости распространения пламени, которая наблюдается в неподвижной смеси и в ламинарном потоке рекомендуется следующая приближённая формула:

(1.2)

где, а – коэффициент температуропроводности, а = l / r · с,

здесь l – коэффициент теплопроводности;

с – теплоёмкость смеси.

Для заданного состава смеси Uн зависит только от температуры. Максимальные значения Uн наблюдается для составов смесей близких к стехиометрии (коэффициент избытка воздуха a = 0,95 ¸ 1,0). С уменьшением и с увеличением коэффициента a величина Uн снижается. На пределах горения наблюдаются минимальные значения Uн.

Распространение пламени в турбулентном потоке имеет очень сложный механизм. До сих пор нет единого мнения о процессах, протекающих в зоне турбулентного горения. Крайними точками зрения являются «поверхностная» и «объёмная» модели горения. Величина турбулентной скорости распространения пламени для мелкомасштабной и крупномасштабной турбулентности определяется соответственно по формулам:

(1.3)

где L – масштаб турбулентности;

– пульсационная скорость;

В – константа, зависящая от физико-химических свойств топлива.

Различают два предельных метода (принципа) сжигания: кинетический и диффузионный. При кинетическом методе однородная смесь с некоторым избытком воздуха (a > 1) приготавливается заранее. Скорость процесса кинетического горения определяется физическими и кинетическими свойствами топливовоздушной смеси. При диффузионном методе процесс смесеобразования совмещается с процессом горения, поэтому скорость диффузионного горения определяется аэродинамическими, диффузионными факторами.

В теплотехнической практике широко используется промежуточный или смешанный метод сжигания газа. В этом случае газ предварительно смешивается с частью воздуха, необходимого для горения (a = 0,4 ÷ 0,8), а остальное количество воздуха (a > 1) поступает непосредственно в зону горения. Таким образом, процесс горения происходит в две стадии. На первой стадии по кинетическому принципу за счёт первичного воздуха и на второй стадии по диффузионному принципу за счёт вторичного воздуха.

Все стадии процесса горения (смесеобразование, подогрев и горение) осуществляются в горелке и камере горения (топочной камере). Основные функции горелки:

▪ подача газа и воздуха в топку;

▪ стабилизация фронта воспламенения:

▪ обеспечение минимальной эмиссии токсичных веществ.

В горелках, реализующих кинетический и промежуточный метод сжигания газа, смесеобразование происходит обычно в эжекторе (инжекторе). Стабилизация фронта горения необходима для предотвращения проскока и отрыва пламени.

Для снижения эмиссии токсичных веществ используются различные способы и устройства организации горения, разработанные на основе теоретических и экспериментальных исследований. Некоторые из них рассмотрены ниже.

Дата добавления: 2015-06-22 ; просмотров: 1398 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Теория горения (стр. 1 из 2)

1. Физико-химические основы горения

1. Физико-химические основы горения

Горение — это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и свечением.[2, 7c]

В зависимости от скорости протекания процесса, горение может происходить в форме собственно горения и взрыва.

Для процесса горения необходимо:

1) наличие горючей среды, состоящей ив горючего вещества и окислителя; 2) источника воспламенения.

Чтобы возник процесс горения, горючая среда должна быть нагрета до определенной температуры при помощи источника воспламенения (пламя, искра электрического или механического происхождения, накаленные тела, тепловое проявление химической, электрической или механической энергий).

После возникновения горения постоянным источником воспламенения является зона горения. Возникновение и продолжение горения возможно при определенном количественном соотношении горючего вещества и кислорода, а также при определенных температурах и запасе тепловой энергии источника воспламенения. Наибольшая скорость стационарного горения наблюдается в чистом кислороде, наименьшая — при содержании в воздухе 14 — 15% кислорода. При меньшем содержании кислорода в воздухе горение большей части веществ прекращается.

Различают следующие виды горения:

— полное — горение при достаточном количестве или избытке кислорода;

— неполное — горение при недостатке кислорода.

При полном горении продуктами сгорания являются двуокись углерода (CO2 ), вода (H2 O), азот (N), сернистый ангидрид (SO2 ), фосфорный ангидрид. При неполном горении обычно образуются едкие, ядовитые горючие и взрывоопасные продукты: окись углерода, спирты, кислоты, альдегиды.

Горение веществ может протекать не только в среде кислорода,
но также в среде некоторых веществ, не содержащих кислорода, хлора,
паров брома, серы и т.д.

Горючие вещества могут быть в трех агрегатных состояниях:
жидком, твердом, газообразном. Отдельные твердые вещества при нагревании плавятся и испаряются, другие — разлагаются и выделяют газообразные продукты и твердый остаток в виде угля и шлака, третьи не разлагаются и не плавятся. Большинство горючих веществ независимо от агрегатного состояния при нагревании образуют газообразные продукты, которые при смешивании с кислородом воздуха образуют горючую среду.

По агрегатному состоянию горючего и окислителя различают:

— гомогенное горение — горение газов и горючих парообразующих веществ в среде газообразного окислителя;

— горение взрывчатых веществ и порохов;

— гетерогенное горение — горение жидких и твердых горючих веществ в среде газообразного окислителя;

— горение в системе «жидкая горючая смесь — жидкий окислитель».

Важнейшим вопросом теории горения является распространение пламени (зоны резкого возрастания температуры и интенсивной реакции). Различают следующие режимы распространения пламени (горения):

— нормальный режим горения;

а) Нормальный режим горения наблюдается при спокойном гетерогенном двухфазном диффузионном горении. Скорость горения будет определяться скоростью диффузии кислорода к горючему веществу в зону горения. Распространение пламени происходит от каждой точки фронта пламени по нормали к его поверхности. Такое горение и скорость распространения пламени по неподвижной смеси вдоль нормали к его поверхности называют нормальным (ламинарным).

Нормальные скорости горения невелики. В этом случае повышения давления и образования ударной волны не происходит.

б) В реальных условиях вследствие протекания внутренних процессов и при внешних осложняющих факторах происходит искривление фронта пламени, что приводит к росту скорости горения. При достижении скоростей распространения пламени до десятков и сотен метров в секунду, но не превышающих скорости звука в данной среде (300 – 320м/сек) происходит взрывное (дефлеграционное) горение.

При взрывном горении продукты горения нагреваются до 1.5-3.0 тысяч °С, а давление в закрытых системах увеличивается до 0.б-0.9МПа.

Продолжительность реакции горения до взрывного режима составляет для газов

0.2 – 0.3 сек, пыли

Применительно к случайным промышленным взрывам под дефлебрацией обычно понимают горение облака с видимой скоростью порядка 100 — 300 м/сек, при которой генерируются ударные волны с максимальным давлением 20 — 100 кПа.

в) В определенных условиях взрывное горение может перейти в детонационный процесс, при котором скорость распространения пламени превышает скорость распространения звука и достигает 1 — 5 км/сек. Это происходит при сильной турбулизации материальных потоков, вызывающей значительное искривление фронта пламени большое увеличение его поверхности.

При этом возникает ударная волна, во фронте которой резко повышается плотность, давление температура смеси. При возрастании этих параметров смеси до самовоспламенения горячих веществ возникает детонационная волна, являющаяся результатом сложения ударной волны и образующейся зоны сжатой быстрореагирующей (самовоспламеняющейся) смеси.

Избыточное давление в пределах детонирующего облака смеси может достигать 2 МПа.

Процесс химического превращения горючих веществ, который вводится ударной волной и сопровождается быстрым выделением энергии, называется детонацией.

При детонационном режиме горения облака ГВ большая часть энергии взрыва переходит в воздушную ударную волну, при дефлеграционном горении со скоростью распространения пламени

200 м/сек переход энергии в волну составляет от 30 до 40%.[2, 278c]

Взрыв — это освобождение большого количества энергии в ограниченном объеме за короткий промежуток времени.[3, 4c]

Взрыв приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, который при моментальном расширении оказывает ударное механическое воздействие (давление, разрушение) на окружащие тела.

Взрыв в твердой среде сопровождается ее разрушением и дроблением, в воздушной или водной — вызывает образование воздушной или гидравлической ударных волн, которые и оказывают разрушающее воздействие на помещенные в них объекты.

В деятельности, не связанной с преднамеренными взрывами в условиях промышленного производства, под взрывом следует понимать быстрое, неуправляемое высвобождение энергии, которое вызывает ударную волну, движущуюся на некотором удалении от источника.

В результате взрыва вещество, заполняющее объем, в котором происходит высвобождение энергии, превращается в сильно нагретый газ (плазму) с очень высоким давлением, (до нескольких сотен тысяч атмосфер). Этот газ, моментально расширяясь оказывает ударной механическое воздействия на окружающую среду, вызвав ее движение. Взрыв в твердой среде вызывает ее дробление и разрушение в гидравлической и воздушной среде — вызывает образование гидравлической и воздушной ударной (взрывной) волны.

Взрывная волна — есть движение среды, порожденное взрывом, при котором происходит резкое повышение давления, плотности и температуры среды.

Фронт (передняя граница) взрывной волны распространяется по среде с большой скоростью, в результате чего область охваченная движением, быстро расширяется.

Посредством взрывной волны (или разлетающихся продуктов взрыва — в вакууме) взрыв производит механическое воздействие на объекты, находящиеся на различных удалениях от места взрыва. По мере увеличения расстояния от места взрыва механическое воздействие взрывной волны ослабевает. Таким образом, взрыв несет потенциальную опасность поражения людей и обладает разрушительной способностью.[1, 113c]

Взрыв может быть вызван:

— детонацией конденсированных взрывчатых веществ (ВВ);

— быстрым сгоранием воспламеняющего облака газа или пыли;

— внезапным разрушением сосуда со сжатым газом или с перегретой жидкостью;

— смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т.д.

В зависимости от вида энергоносителей и условий энерговыделения, источниками энергии при взрыве могут быть как химические так и физические процессы.

Источником энергии химических взрывов являются быстропротекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или реакции термического разложения нестабильных соединений.

Источниками энергии сжатых газов (паров) в замкнутых объемах аппаратуры (оборудования) могут быть как внешние (энергия, используемая для сжатия тазов, нагнетания жидкостей; теплоносители, обеспечивающие нагрев жидкости и газов в замкнутом пространстве) так и внутренние (экзотермические физико-химические процессы и процессы тепломассообмена в замкнутом объеме), приводящие к интенсивному испарению жидкостей или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Источником энергии ядерных взрывов являются быстропротекающие цепные ядерные реакции синтеза легких ядер изотопов водорода (дейтерия и трития) или деления тяжелых ядер изотопов урана и плутония. Физические взрывы возникают при смещении горячей и холодной жидкостей, когда температура одной из них значительно превосходит температуру кипения другой. Испарение в этом случае протекает взрывным образом. Возникающая при этом физическая детонация сопровождается возникновением ударной волны с избыточным давлением, достигающим в ряде случаев сотен МПа.

Энергоносителями химических взрывов могут быть твердые, жидкие, газообразные горючие вещества, а также аэровзвеси горючих веществ (жидких и твердых) в окислительной среде, в т.ч. и в воздухе.

Таким образом, различаются взрывы двух типов. К первому типу относят взрывы, обусловленные высвобождением химической или ядерной энергии вещества, например взрывы химических взрывчатых веществ, смесей газов, пыли и (или) паров, а также ядерные и термоядерные взрывы. При взрывах второго типа выделяется энергия, полученная веществом от внешнего источника. Примеры подобных взрывов — мощный электрический разряд в среде (в природе — молния во время грозы); испарение металлического проводника под действием тока большой силы; взрыв при воздействии на вещество некоторых излучений большой плотности энергии, напр. сфокусированного лазерного излучения; внезапное разрушение оболочки со сжатым газом.

Физико-химические основы процесса горения и взрыва

Горение есть главный и основной процесс на пожаре.

Горением называется сложный физико-химический процесс превращения исходных горючих веществ и материалов в продукты сгорания, сопровождающийся интенсивным выделением тепла, дыма и световым излучением факела пламени.

Пожар и взрыв — разные явления, но в терминах теории вероятностей они происходят по одной логической схеме и имеют общую математическую модель. Пожар происходит при случайном появлении опасного источника и случайном нахождении в непосредственной близости горючего материала. Взрыв происходит при случайном появлении опасного источника и случайном появлении опасной концентрации взрывоопасного газа (пыли) в месте появления открытого источника [3].

Взрыв — это относительно большое выделение количества энергии в конечном ограниченном объеме за сравнительно короткий промежуток времени. Это процесс интенсивного выделения тепловой энергии из горючей смеси при ее сгорании в ограниченном объеме.

Горение возможно при наличии трех условий: горючего вещества с определенной температурой воспламенения, достаточного количества окислителя, источника воспламенения определенной мощности.

Взрывоопасной средой являются: смеси веществ (газов, паров и пылей) с воздухом и другими окислителями (кислородом, озоном, окислами азота и др.), способные к взрывчатому превращению; отдельные вещества, склонные к взрывному разложению (ацетилен, озон, аммиачная селитра и др.).

Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, которые под воздействием высоких температур вступают в химические взаимодействия с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

По скорости распространения различают дефлаграционное, взрывное и детонационное горение. Важнейшая особенность процесса горения — самоускоряющийся характер химического превращения.

Основными параметрами, характеризующими взрыв (взрывное горение), являются: максимальное давление взрыва, давление на фронте ударной волны, средняя и максимальная скорость нарастания давления при взрыве, фугасные или дробящие свойства взрывоопасной среды.

Детонация — особая форма взрывного горения, при котором импульс воспламенения передается от слоя к слою не за счет теплопроводности, а вследствие импульса давления. Для возникновения детонации требуется сильная ударная волна. Она, как правило, возникает при резком увеличении скорости распространения пламени или при более мощном источнике зажигания [4].

Каждому горению присущ конкретный источник зажигания, при этом всякое горение начинается с самовоспламенения (самовозгорания) или вынужденного воспламенения (зажигания) от пламени (разогретого тела) или электрической искры.

Воспламенение — это возгорание горючей среды под воздействием источника зажигания, сопровождающееся появлением пламени; самовоспламенение — это явление резкого увеличения скорости экзотермической реакции, приводящей к возникновению горения в отсутствие источника зажигания.

Горению присущи опасные факторы, которые называются опасными факторами пожара. Опасными факторами, воздействующими на людей и материальные ценности, являются:

повышенная температура окружающей среды;

* токсические продукты горения и термического разложения;

* пониженная концентрация кислорода.

Предельные значения опасных факторов пожара следующие:

* температура среды — 70 °С;

* тепловое излучение — 500 Вт/м2;

* содержание оксида углерода — 0,1 % (об);

* содержание диоксида углерода — 6 % (об);

* содержание кислорода — менее 17 % (об).

Верхний и нижний концентрационные пределы воспламенения (ВКПВ и НКПВ) — соответственно максимальная и минимальная концентрации горючих газов, паров ЛВЖ, пыли или волокон в воздухе, выше и ниже которых взрыва не произойдет даже при возникновении источника инициирования взрыва.

Взрывоопасная смесь (ВОС) — смесь с воздухом (кислородом или другим окислителем) ГГ, паров ЛВЖ, горючих пыли или волокон с НКПВ не более 65 г/м3 при переходе их во взвешенное состояние, которая при определенной концентрации способна взорваться при возникновении источника инициирования взрыва.

К взрывоопасным относятся:

* горючие газы при любой температуре окружающей среды.

* легковоспламеняющиеся жидкости у которых Гс п 61 °С), нагретые в условиях производства до температуры вспышки и выше.

* горючие пыли и волокна, если их НКПВ не превышает 65 г/м3.

* смесь горючих газов и паров ЛВЖ с кислородом воздуха или другим окислителем.

Взрывоопасная зона — помещение или ограниченное пространство в помещении или наружной установки, в котором имеются или могут образовываться взрывоопасные смеси.

Ссылка на основную публикацию
Adblock
detector