0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вычисление логарифмов примеры решения

Свойства логарифмов и примеры их решений. Исчерпывающий гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Как научиться решать логарифмы?

Объясним все человеческим языком. Логарифмы – ОЧЕНЬ простая тема.

Чтобы понять как их решать – нужно: разобраться со свойствами логарифма и понимать что как называется, понимать разницу между видами логарифмов (десятичными и натуральными).

Ну и уметь возводить число в степень, знать таблицу умножения (а это ты точно умеешь).

Все. Больше ничего не нужно.

Прочитай эту статью, обязательно реши примеры и решение логарифмов навсегда станет для тебя задачкой easy-peasy lemon squeezy — очень легкой 🙂

Что такое логарифм?

Для начинающих объясним все человеческим языком. Логарифмы – очень простая тема. Чтобы понять как их решать – нужно всего лишь разобраться что как называется, знать таблицу умножения и уметь возводить в число в степень. Все. Больше ничего не нужно.

Начнем с простого. Как решить уравнение ?

Очень легко – просто ответь на вопрос в какую степень нужно возвести число чтобы получить ? Решаем методом подбора: два в первой степени – нет, два во второй степени – нет, два в третей степени – ДА! Двойку нужно возвести в ТРЕТЬЮ степень, чтобы получить восемь ( ) и значит решением уравнения будет число три ( ).

Следующий вопрос. Как решить уравнение ?

Опять просто ответь на вопрос в какую степень нужно возвести число , чтобы получить число ? Попытаемся подобрать: два во второй степени равно четыре – мало, два в третьей степени равно восемь – много. Метод подбора сразу ответ не дает… Да и вообще, в этом случае подобрать решение не получится – ведь это не только нецелое число, это число даже не рациональное. Для нахождения таких решений было придумано понятие логарифм: . В общем виде он записывается так:

То есть логарифм – это степень, в которую нужно возвести основание , чтобы получить аргумент .

Вернёмся к . Если ты посчитаешь на калькуляторе, то получишь и т.д. Это число иррациональное. Оно мало того, что не подбирается, оно еще и не кончается…

Ну и как с такими числами работать? Как их запоминать? Как их записывать?

В нашем случае решение уравнения можно записать как или как .

Согласись второе выражение гораздо удобнее, чем первое. И оно, кстати, абсолютно точное.
Словами это произносится как: «Решением уравнения два в степени икс равно пяти является логарифм пяти по основанию два, или логарифм по основанию два от пяти».

Кстати, а ты заметил что и у степени числа и у логарифма основание всегда находится «ВНИЗУ». Легко запомнить правда? А вот «вверху», у степени находится ее показатель, а у логарифма – аргумент.

Выражение можно также записать в виде . Читается так: «Логарифм восьми по основанию два равен трем» или «Логарифм по основанию два от восьми равен трем».

Теперь более общая запись:

Читается так: «Логарифм по основанию от равен », и означает: «Чтобы получить число , нужно число возвести в степень »:

Иными словами, – это степень, в которую нужно возвести , чтобы получить .

Примеры вычисления логарифмов

  1. , так как число нужно возвести во вторую степень, чтобы получить .
  2. Чему равен ? Заметим, что , тогда , то есть нужно возвести в степень , чтобы получить .
  3. А чему равен ? Обращать внимание нужно, в первую очередь, на основание. Возможно ли представить как в какой-то степени? Да, возможно: запишем это число в виде обычной дроби: . Значит, .
  4. Еще пример. Чему равен ? В какую степень надо возвести , чтобы получить ? Вспоминаем, что любое число в нулевой степени равно (подробнее читай в разделе «Степень и ее свойства»). Значит, . Более того, логарифм с любым основанием от единицы равен .
  5. . В этом случае аргумент равен корню основания: . Но мы помним, что корень тоже можно представить в виде степени (с дробным показателем): .

Попробуй найти следующие логарифмы самостоятельно:

Формулы логарифмов. Логарифмы примеры решения.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения.

Ранее мы уже познакомились с понятием логарифма. А также рассмотрели основные свойства и примеры решения.

Формулы логарифмов сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов.

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения logab = x, что равносильно a x = b, поэтому logaa x = x.

log28 = 3, т.к. 2 3 = 8

log749 = 2, т.к. 7 2 = 49

log51/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм — это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log10100 = 2, т.к. 10 2 = 100

Натуральный логарифм — также обычный логарифм логарифм, но уже с основанием е (е = 2,71828. — иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

    Основное логарифмическое тождество
    a logab = b

8 2log83 = (8 2log83 ) 2 = 3 2 = 9
Логарифм произведения равен сумме логарифмов
loga (bc) = logab + logac

log38,1 + log310 = log3 (8,1*10) = log381 = 4
Логарифм частного равен разности логарифмов
loga (b/c) = logab — logac

9 log550 /9 log52 = 9 log550- log52 = 9 log525 = 9 2 = 81
Свойства степени логарифмируемого числа и основания логарифма

Показатель степени логарифмируемого числа logab m = mlogab

Показатель степени основания логарифма loga n b =1/n*logab

если m = n, получим loga n b n = logab

log49 = log2 2 3 2 = log23
Переход к новому основанию
logab = logcb/logca,

если c = b, получим logbb = 1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: «Решение логарифмических уравнений. Как решать, на примерах». Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Вычисление логарифмов примеры решения

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно — уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 — 20 минут вы:

1. Поймете, что такое логарифм.

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень.

Чувствую, сомневаетесь вы. Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

3 x = 9

Это показательное уравнение. Оно так называется потому, что х стоит в показателе степени. Если вы не в ладах с показательными уравнениями, или вообще про них ничего не слышали — не страшно. Просто подберите х, чтобы равенство сработало. Удалось? Ну да, х = 2. Три в квадрате — это девять.

А теперь решите почти то же самое:

3 x = 8

Что, что-то не так? Ответ, что нету такого икса, не принимается!

Согласитесь, что это как-то нечестно – с девяткой пример решается в уме, а с восьмеркой не решается вовсе! Ну чем девятка лучше восьмерки?! Математика не терпит такой дискриминации. Для математики все числа равны! Ну, не буквально, конечно….

Можно сообразить, что икс – какое-то дробное число, между единичкой (3 1 = 3) и двойкой (3 2 = 9). И даже приближенно подобрать, найти это число. Но так возиться каждый раз. Математика решает вопрос как всегда радикально и элегантно. Просто введением понятия логарифма. Итак, что такое логарифм?

Вернёмся к нашему загадочному примеру:

3 x = 8.

х — это число, в которое надо возвести 3, чтобы получить 8. Фраза понятна? Если непонятна, прочитайте ещё раз. И ещё. Это важно.

Вот и назовём это число логарифмом восьми по основанию три. Записывается это вот как:

Читаем ещё раз: «икс равен логарифму восьми по основанию три».

Где что пишется – запомнить легко: число 3 – называется основанием, пишется в логарифме и в показательном выражении внизу. Основание у чего угодно — оно, обычно, внизу бывает.

И это правильный ответ!

Мы решили крутое показательное уравнение 3 x = 8!

И, неожиданно для себя, научились решать все показательные уравнения такого типа!

Как решить пример:

5 x = 12 ?

Легко! х — это число, в которое надо возвести 5, чтобы получить 12. В математической записи:

2 x =135 ?

19 x = 0,352 ?

Это все верные ответы! Приятно, правда?

Представьте, мы в обыденной жизни спросили, например: «как доехать до вокзала?» И нам честно и правильно ответили: «На автобусе, который идёт до вокзала!» В жизни толку с такого ответа мало.

А в математике — пожалуйста!

На вопрос: чему равен х в уравнении

3 x = 8 ?

Мы честно отвечаем: х равен числу, в которое надо возвести 3, чтобы получить 8! Или, чтобы так долго не говорить, пишем в сокращённом варианте, через логарифм:

Вас смущает, что вместо конкретного числа мы пишем какие-то значки с цифрами? Ну ладно, только для вас. Я покажу вам это конкретное число:

Легче стало? Учтите ещё, что это число никогда не кончается. Иррациональное оно.

Поэтому и записывают логарифмы вместо страшно лохматых чисел. Кому надо числовой ответ — посчитает на калькуляторе.

Так, что такое логарифм — осознали, и решать целый класс показательных уравнений — научились.

Но радость от новых знаний будет неполной без ложки дегтя. Если логарифм считается без калькулятора, его надо считать. Ответ, например, х = log24 нехорош. Этот логарифм вычисляется, и его вы обязаны посчитать. Собственно, это и есть решение логарифма.

И чему же равен log24?

Переводим с математического на русский: log24 — это число, в которое надо возвести 2 (основание), чтобы получить 4. Ну, во что надо возвести 2, чтобы получить 4!?

Да! В двойку надо возвести! Вот и ответ:

А log327 чему равен? Тройка в какой степени даст 27? В третьей! Ответ:

Уловили? Ну-ка разовьём успех! Решаем примеры:

Ответы (в беспорядке, разумеется!): 2; 1; 3; 4.

Что, тяжело сообразить, в какой степени шестёрка даст 216? А я предупреждал, что здесь таблицу умножения знать надо! Более того, намекну, что таблицу умножения вообще знать надо. Не только здесь.

Ну что, смотрим на часы? Сильно я ошибся?

Вот мы и познакомились с логарифмами. На понятном уровне. Вы убедились, что они не опасны. Но есть, есть у них свои фишки! Самая важная — это ограничения.

До сих пор мы знали два жёстких ограничения. Нельзя делить на ноль и извлекать корень чётной степени из отрицательного числа. Эти ограничения играют огромную роль в решении заданий. Про ОДЗ помните? Теперь добавляются ограничения, связанные с логарифмами.

Запишем в общем виде, т.е. через буквы:

Вспомним: а — это основание, которое нужно возвести в степень с, чтобы получить b.

Прикинем, любым ли числом может быть а? Если, к примеру, а = 1? Забавно получится, единица в любой степени — единица. Как-то оно не очень. Как ни меняй с, а а и b единичками останутся. Та же история и с нулём. Не годятся эти числа в качестве основания. Отрицательные числа — капризные. В одну степень их можно возводить, в другую нельзя. Вот и поступили с ними, как со всеми капризными – вовсе исключили из рассмотрения.

В результате получилось:

а > 0; a ≠ 1

А если мы положительное число возведём в любую степень, мы получим. получим. Да! Положительное число и получим. Отсюда:

Вот и все ограничения. Только на а и b. с может быть совершенно любым числом.

При решении числовых логарифмов эти ограничения практически не сказываются. Но при решении логарифмических уравнений и неравенств — это настолько важно, что я здесь про ограничения сказал, в уравнениях скажу, и при любом удобном случае повторять буду!

Ещё не мешает знать, что такое десятичный логарифм и что такое натуральный логарифм? В математике два основания употребляются очень часто. Это основание 10 и основание е. Число е.

Иррациональное число. Сплошь и рядом попадается в высшей математике. Само попадается, его не придумали. Почему попадается — неизвестно.

Значки логарифмов по этим основаниям имеют своё написание.

Основание 10 не пишется, буква «о» пропадает. Такие логарифмы называются десятичными. И

Логарифмы по основанию «е» называются натуральными. Хотя чего уж там натурального.

Эти логарифмы ничем не отличаются от всех остальных! Ни по определению, ни по свойствам! Решение этих логарифмов ничем не отличается от решения обычных!

Пора переходить к лаконичным математическим формулировкам. К свойствам логарифмов. Популярное выражение «Решение логарифмов» предполагает не только вычисления, но и преобразования. По определённым правилам, естественно.

Запишем знакомое нам выражение:

Мы уже хорошо знаем, что если число а (основание) возвести в степень с, то получим число b. Это из самого определения логарифма следует. Стало быть, можно записать:

А теперь смотрим, чему же равно число с? Да вот оно:

Подставим это в предыдущую формулу, и получим:

И зачем нам эта перетасовка? Затем, что 4х-этажное выражение превращается в элементарное b! Это хорошее свойство!

Это первая формула свойств логарифмов. Её надо помнить! Единственная формула, где логарифм стоит в показателе степени.

Приведу ещё свойства, которые не требуют специальных выводов, а проистекают из определения логарифма и элементарной логики.

Чему равняется выражение:

В какую степень надо возвести а, чтобы получить 1? Неужто забыли? Нет? Ну, хорошо! Да, в нулевую! Вот и пишем:

Думаю, что следующее свойство уже не требует разъяснений:

Оставшиеся свойства логарифмов выводить не будем, я их приведу сразу в комплекте. Этот комплект надо знать! Это основа для решения логарифмов.

Свойства логарифмов.

Такой вот джентльменский набор. Много? Да нет. Первые три — понятны. Остаётся всего пять запомнить. Но их надо знать железно. Причем слева направо и справа налево. Особо отмечу последнюю формулу. Это формула перехода к новому основанию логарифма. Ленятся ее, почему-то, запоминать. А в ЕГЭ, бывает, только она и спасает. Мы с ней дружить будем.

Обратите внимание — действия с логарифмами (формулы 4 и 5) возможны только при одинаковых основаниях! А если основания разные!? А вот тут нас как раз спасёт последняя формула.

Ещё отмечу, что эти формулы верны безо всяких оговорок для положительных х и у. В числовых логарифмах так обычно и бывает. А вот в уравнениях придётся модули использовать. Но там мы разберёмся со всеми подводными камнями, не волнуйтесь!

Ну, ладно. Формулы хорошие, решать-то как? Открываю тайну. Все задания на упрощение выражений с логарифмами решаются применением этих хороших формул (во, Америку открыл!). Попробуем, что-нибудь простенькое?

Оба логарифма ровно не считаются. Смотрим на формулы — свойства и выбираем подходящую. Это четвёртая формула, только справа налево. Подумаешь! Сообразим как-нибудь.

Как видите, свойства логарифмов позволили нам перейти от несчитаемого выражения к чудному числу 1. Собственно, это и есть общая идея решения логарифмов (да и идея математики вообще!) — использование правил, свойств для преобразования плохих выражений (я про математику!) в хорошие.

Надеюсь, всё понятно? Что, слишком элементарно? Ну ладно. Вот примеры чуток посложнее. Вычислить:

Ответы (в беспорядке): 2; 2,5; 4,5; 3.

Решилось? Неплохо! А ещё?

Тоже без проблем? Ну ладно. А вот это?

Ответы: 1; 36; 1; 2; 0,5.

И это получилось? Блеск! Ну что ж, думаю, что решение логарифмов — не самое слабое Ваше место! Можете заглянуть в Раздел 555. Особый. Есть там примерчик для Вас, на десерт. На третьем уровне.

Что, не всё решается? Или ничего не решается? Не переживайте, это дело поправимое. Вам прямая дорога в Раздел 555. Особый. Там подробно рассказано, как свойства логарифмов в дело употреблять. И не только для этих примеров, а и для всех сразу! Даны практические советы, которых вы не найдёте в учебниках. Очень рекомендую!

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Основные свойства логарифмов

  • Материалы к уроку
  • Скачать все формулы

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Задача. Найдите значение выражения: log6 4 + log6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

  1. log a x n = n · log a x ;

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log7 49 6 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

[Подпись к рисунку]

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

[Подпись к рисунку]

В частности, если положить c = x , получим:

[Подпись к рисунку]

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 2 4 = 4log5 2; log2 25 = log2 5 2 = 2log2 5;

А теперь «перевернем» второй логарифм:

[Подпись к рисунку]

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

[Подпись к рисунку]

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

[Подпись к рисунку]

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

  1. n = log a a n

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

[Подпись к рисунку]

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. log a a = 1 — это логарифмическая единица . Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. log a 1 = 0 — это логарифмический ноль . Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a 0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Логарифмы: примеры и решения

Как известно, при перемножении выражений со степенями их показатели всегда складываются (a b *a c = a b+c ). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: logab=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) «b» по его основанию «a» считается степень «c», в которую необходимо возвести основание «a», чтобы в итоге получить значение «b». Разберем логарифм на примерах, допустим, есть выражение log28. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное — понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный логарифм lg a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание «a» всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь «1» и «0» в любой степени всегда равны своим значениям;
  • если а > 0, то и а b >0, получается, что и «с» должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10 х = 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, квадратичная степень! 10 2 =100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log10100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел — это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (a c =b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени — это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 3 4 =81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log381 = 4). Для отрицательных степеней правила такие же: 2 -5 = 1/32 запишем в виде логарифма, получим log2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема «логарифмы». Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

Дано выражение следующего вида: log2(x-1) > 3 — оно является логарифмическим неравенством, так как неизвестное значение «х» находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример — логарифм2x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: а logaB =B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: logd(s1*s2) = logds1 + logds2. При этом обязательным условием является: d, s1 и s2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть logas1 = f1 и logas2 = f2, тогда a f1 = s1, a f2 = s2. Получаем, что s1*s2 = a f1 *a f2 = a f1+f2 (свойства степеней), а далее по определению: loga(s1*s2)= f1+ f2 = logas1 + logas2, что и требовалось доказать.
  3. Логарифм частного выглядит так: loga(s1/s2) = logas1— logas2.
  4. Теорема в виде формулы приобретает следующий вид: loga q b n = n/q logab.

Называется эта формула «свойством степени логарифма». Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть logab = t, получается a t =b. Если возвести обе части в степень m: a tn = b n ;

но так как a tn = (a q ) nt/q = b n , следовательно loga q b n = (n*t)/t, тогда loga q b n = n/q logab. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов — примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры десятичных логарифмов: ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log24 + log2128 = log2(4*128) = log2512. Ответ равен 9.
  2. log48 = log2 2 2 3 = 3/2 log22 = 1,5 — как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы «Натуральные логарифмы».

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log2(2x-1) = 4. Решение:
перепишем выражение, немного его упростив log2(2x-1) = 2 2 , по определению логарифма получим, что 2x-1 = 2 4 , следовательно 2x = 17; x = 8,5.

Ниже даны несколько рекомендаций, следуя которым можно с легкостью решать все уравнения, содержащие выражения, которые стоят под знаком логарифма.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.

Логарифмы

Предыдущую статью о показательных уравнениях мы начали с уравнения 2 x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2 x = 7.

По графику функции y = 2 x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 2 2 = 4, 2 3 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два». Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107.

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

так как

, так как

так как ;

, так как .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

Логарифм частного — это разность логарифмов:

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

Формулы (4) и (5) вместе дают:

В частности, если m = n, мы получаем формулу:

Например, .

Наконец, важнейшая формула перехода к новому основанию:

В частности, если c = b, то logbb = 1, и тогда:

Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).

2. (применили основное логарифмическое тождество(1))

3. (применили формулу (4).

4. (применили формулу (9), перейдя к новому основанию 0,8).

5. (применили формулу (3) разности логарифмов)

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Ссылка на основную публикацию
Adblock
detector