1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Значения функции и точки максимума и минимума

Максимумы, минимумы и экстремумы функций

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

Все вышесказанное можно обобщить следующими выводами:

— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)).
  2. Найдите корни уравнения (f'(x)=0).
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов).
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    — если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    — если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    — если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

Теперь очевидно, что точкой максимума является (-2).

Значения функции и точки максимума и минимума

Репетитор по математике и физике

  • +7 (953) 35-222-89
  • Санкт-Петербург, Лиговский пр.52
  • Kyziaha@gmail.com

Значения функции и точки максимума и минимума

Наибольшее значение функции

Наменьшее значение функции

Как говорил крестный отец: «Ничего личного». Только производные!

Статью Как посчитать производные? надеюсь, ты изучил, без этого дальше будет проблематично.

12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.

12 задание бывает двух видов:

  1. Найти точку максимума / минимума (просят найти значения «x»).
  2. Найти наибольшее / наименьшее значение функции (просят найти значения «y»).

Как же действовать в этих случаях?

Найти точку максимума / минимума

  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный или найденные «х» и будут являться точками минимума или максимума.
  4. Определить с помощью метода интервалов знаки и выбрать, какая точка нужна в задании.

Найдите точку максимума функции

  • Приравняем ее к нулю:
  • Получили одно значение икса, для нахождения знаков подставим −20 слева от корня и 0 справа от корня в преобразованную производную (последняя строчка с преобразованием):


Все верно, сначала функция возрастает, затем убывает — это точка максимума!
Ответ: −15

Найдите точку минимума функции

  • Преобразуем и возьмем производную:

  • Получается один корень «−2», однако не стоит забывать о «−3», она тоже будет влиять на изменение знака.

  • Отлично! Сначала функция убывает, затем возрасает — это точка минимума!

Ответ: −2

Найти наибольшее / наименьшее значение функции

  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный «х» и будет являться точкой минимума или максимума.
  4. Определить с помощью метода интервала знаки и выбрать, какая точка нужна в задании.
  5. В таких заданиях всегда задается промежуток: иксы, найденные в пункте 3, должны входить в данный промежуток.
  6. Подставить в первоначальное уравнение полученную точку максимума или минимума, получаем наибольшее или наименьшее значение функции.

Найдите наибольшее значение функции на отрезке [−4; −1]

  • Преобразуем и возьмем производную:
  • «3» не вдходит в промежуток [−4; −1]. Значит, остается проверить «−3» — это точка максимума?

  • Подходит, сначала функция возрастает, затем убывает — это точка максимума, и в ней будет наибольшее значение функции. Остается только подставить в первоначальную функцию:

Найдите наибольшее значение функции на отрезке [0; 1,5π]

  • Берем производную:
  • Находим, чему равняется sin(x):
  • Но такое невозможно! Sin(x).
  • Получается, что уравнение не имеет решения, и в таких ситуациях нужно подставлять крайние значения промежутка в первоначальное уравнение:

  • Наибольшее значение функции равно «11» при точке максимума (на этом отрезке) «0».
  1. 70% ошибок заключается в том, что ребята не запоминают, что в ответ на наибольшее/наименьшее значение функции нужно написать «y» , а на точку максимума/минимума написать «х».
  2. Нет решения у производной при нахождении значений функции? Не беда, подставляй крайние точки промежутка!
  3. Ответ всегда может быть записан в виде числа или десятичной дроби. Нет? Тогда перерешивай пример.
  4. В большинстве заданий будет получаться одна точка и наша лень проверять максимум или минимум будет оправдана. Получили одну точку — можно смело писать в ответ.
  5. А вот с поиском значения функции так поступать не стоит! Проверяйте, что это нужная точка, иначе крайние значения промежутка могут оказаться больше или меньше.

Понятие функции. Нули функции. Точки максимума и минимума функции

Функция

1. Функция – это зависимость одной переменной величины от другой. Это взаимосвязь между величинами. Любой физический закон, любая формула отражает такую взаимосвязь величин.
Запись y = f(x) означает, что величина y зависит от величины x по определенному закону, или правилу, обозначаемому f.
2. Функция – это определенное действие над переменной.
3. Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.
Каждому элементу множества X по определенному правилу мы ставим в соответствие элемент множества Y. Множество X называется областью определения функции. Множество Y – областью значений.

График функции

Абсцисса — это координата точки по горизонтали.
Ордината — координата по вертикали.

Ось абсцисс — горизонтальная ось, или ось X.
Ось ординат — вертикальная ось, или ось Y.

Аргумент — независимая переменная, от которой зависят значения функции. Обычно обозначается x.

Область определения функции — множество тех (и только тех) значений аргумента x, при которых функция существует. Обозначается: D(f) или D(y).

Область значений функции — это множество значений, которые принимает переменная y. Обозначается: Е(f) или Е(y).

Нули функции — точки, где значение функции равно нулю, то есть y = 0.

Значения функции положительны там, где y > 0.
Значения функции отрицательны там, где y x1 следует неравенство f(x2) > f(x1). Для возрастающей функции большему значению x соответствует большее значение y, то есть график идет вправо и вверх.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Закажите звонок и получите скидку -50% на первый месяц занятий!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Урок алгебры в 11 классе Максимум и минимум функции

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

Урок №33. Алгебра и НМА в 11 классе. Дата 06.11.18 г.

Учитель математики Абкелямова З.Н.

Тема урока: Анализ контрольной работы.Максимум и минимум функции.

Цели : изучить понятие максимума и минимума функции;

Составить алгоритм нахождения максимального и минимального значения функции.

Мотивация : на успешность подготовки к ЕГЭ по математике.

Русский математик XIX века Чебышев говорил , что « особенную важность имеют методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека: как располагать своими средствами для достижения наибольшей выгоды.»

Подготовка к изучению новой темы .

При исследовании поведения функции вблизи точки удобно пользоваться понятием окрестности.

Окрестностью точки а называется любой интервал , содержащий эту точку.

Определение. Точка х 0 называется точкой максимума функции f (х), если существует такая окрестность точки х, что для всех х≠х 0 из этой окрестности выполняется неравенство f ( x ) f ( x 0 ).

Пусть график некоторой функции имеет вот такой вид.

а) Если рассмотреть значение функции в точке х 0 на этом графике то оно будет наибольшим (максимальным), чем в любой другой точке из близлежащей окрестности. В этом случае говорят, что х 0 точка максимума ( max ) .

Точка х 0 из области определения функции называется точкой максимума , если д л ялюбого из окрестноститочки х 0 выполняется неравенство f ( x ) .

Максимум и минимум функции объединяют словом экстремум ( с латинского — крайний), а точки максимума и минимума называют точками экстремума (экстремальными точками)Изучая график можно прийти к выводу, что наиболее «заметными» точками области определения являются какие точки Х, в которых возрастание функции сменяется убыванием (х=-6; х=2; х=7), или, наоборот убывание сменяется возрастанием (х=-7,5; х=-1,5; х=4). Эти точки называются соответственно точками максимума х max =-6 х max =2 х max =7 и минимума х min =-7,5; х min =2; х min =7.

Точку отрезка [а;в], в которой функция достигает наибольшего значения на отрезке называют точкой максимума на отрезке.

Значение функции в этой точке и есть максимум функции на отрезке.

Точку отрезка [а;в], в которой функция достигает наименьшего значения на отрезке называют точкой минимума на отрезке.

Значение функции в этой точке и есть минимум функции на отрезке.

Названия и обозначения максимума и минимума происходит от латинских слов maximum ( наибольшее) minimum ( наименьшее).

На рисунке изображён график непрерывной функции на отрезке [а;в]

2,5 – точка максимума на отрезке [-3;5] .

0– точка минимума на отрезке [-3;5] .

Для точек максимума и минимума принято общее название . Их называют точками экстремума: х max и х min .

Значения функции в этих точках называют соответственно максимума и минимума функции у max , y min .

Пусть надо найти наибольшее и наименьшее значение функции на отрезке [а;в] и имеющей производную на интервале (а,в). Важную роль при нахождении наибольшего и наименьшего значения функции , при построении графика играют критические точки.

Определение. Внутренние точки области определения , в которых производная равна нулю или не существуют называются критическими точками.

Найти критические точки функции

№ 5.6 а) у= 2х 3 -3х 2 [-3;3] .

у ʹ =6х 2 -6х у ʹ =0 х= 0, х=1- критические точки

в) у=3х 4 +х 3 +7 [-3;2]

у ʹ =12х 3 +3х 2 у ʹ =0 х=0, х=-1 –критические точки

№ 5.7 а) у= [-1;1]

у ʹ = у ʹ =0 х=0 производная не существует, следовательно

х=0 критическая точка

6) В ЕГЭ В11 нахождение наибольшего и наименьшего значения функции.

Алгоритм нахождения точек экстремума

Найти производную функции.

Решить уравнение f ´(х)=0, и найти тем самым стационарные точки или критические точки

Найти критические точки функции на интервале (а,в);

Вычислить значения функции в найденных точках, принадлежащих интервалу (а,в);

Вычислить значения функции на концах отрезка, т.е. в точках х=а, х=в;

Среди всех вычисленных значений функции выбрать наибольшее и наименьшее.

Если функция у= f ( x ) на [а;в], имеет точку максимума (минимума), то в этой точке функция принимает наибольшее или наименьшее значение.

Если функция у= f ( x ) на [а;в] не имеет критических точек, то это означает, что на нем функция монотонно возрастает или убывает. Следовательно, свое наибольшее значение функция принимает на одном конце отрезка, а наименьшее на другом.

Найти наибольшее и наименьшее значение функции f ( x )=3х 2 +4х 3 +1 на отрезке [-2;1] . (Решает учитель)

f ʹʹ (x)=(3х 2 +4х 3 +1) ʹ =6х+12х 2 . Для любого хЄR найдем производную f(x)

Х= —

Х=0 и х= — критические точки, принадлежат заданному отрезку.

0Є[-2;1], — Є[-2;1],

Найдем значения функции в заданных точках.

f (- =1,25

f (1)=8 сравнив значения функций, выбираем наибольшее и наименьшее значение функции на отрезке.

Г) № 5.10 а) в) ( для тех кто работает быстро, за каждый верно выполненный пример ученик получает +, три + «5» в журнал)

Домашнее задание №5.10 (в,г) 5.14 стр 120.

дополнительное задание.Найти наибольшее значение функции у= 12 cos х+6 х-2 +6 на отрезке [ 0; ].

Значения функции и точки максимума и минимума

Рассмотрим график непрерывной функции y=f(x), изображенной на рисунке.

Значение функции в точке x1 будет больше значений функции во всех соседних точках как слева, так и справа от x1. В этом случае говорят, что функция имеет в точке x1 максимум. В точке x3 функция, очевидно, также имеет максимум. Если рассмотреть точку x2, то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x2 минимум. Аналогично для точки x4.

Функция y=f(x) в точке x0 имеет максимум, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x0, т.е. если существует такая окрестность точки x0, что для всех xx0, принадлежащих этой окрестности, имеет место неравенство f(x) f(x0.

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x1. В частности, f(x1) 0.

Функция не имеет производной при x=0, так как обращается в бесконечность приx=0. Но в этой точке функция имеет максимум.

Функция не имеет производной при x=0, так как при x→0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x)=0 и при x 0f(x)>0.

Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

Однако, если в некоторой точке x0 мы знаем, что f ‘(x0)=0, то отсюда нельзя делать вывод, что в точке x0 функция имеет экстремум.

Например. .

Но точка x=0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox, а справа выше.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками.

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x0, и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x0 функция имеет максимум. Если же при переходе через x0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

  1. f ‘(x)>0 при x x0, то x0 – точка максимума;
  2. при x0 при x> x0, то x0 – точка минимума.

Доказательство. Предположим сначала, что при переходе через x0 производная меняет знак с плюса на минус, т.е. при всех x, близких к точке x0 f ‘(x)>0 для x x0. Применим теорему Лагранжа к разности f(x) — f(x0) = f ‘(c)(x- x0), где c лежит между x и x0.

Тогда слева от точки x1 функция возрастает, а справа убывает, следовательно, при x = x1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x2 и x3.


Схематически все вышесказанное можно изобразить на картинке:

Правило исследования функции y=f(x) на экстремум

  1. Найти область определения функции f(x).
  2. Найти первую производную функции f ‘(x).
  3. Определить критические точки, для этого:
    1. найти действительные корни уравнения f ‘(x)=0;
    2. найти все значения x при которых производная f ‘(x) не существует.
  4. Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.
  5. Вычислить значение функции в точках экстремума.

Примеры. Исследовать функции на минимум и максимум.

    . Область определения функции D(y)=R.

Найдем производную заданной функции

Определим критические точки . Производная не существует при х2= 0. Следовательно, критические точки: 0 и 2/5. Нанесем их на числовую ось и определим знак производной на каждом из полученных промежутков.

Критическая точка функции x =3. Точка x= –1 не входит в область определения функции.

НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ НА ОТРЕЗКЕ

Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.

Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.

Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b]:

  1. Найти все критические точки функции в интервале (a, b) и вычислить значения функции в этих точках.
  2. Вычислить значения функции на концах отрезка при x = a, x = b.
  3. Из всех полученных значений выбрать наибольшее и наименьшее.

    Найти наибольшее и наименьшее значения функции на отрезке [–2; –0,5].

Найдем критические точки функции.

Вычислим значения функции в найденной точке и на концах заданного отрезка.

Итак,

Найти наибольшее и наименьшее значения функцииy=x-2·ln x на [1; e].

По теореме Пифагора

.

Следовательно, .

.

Найдем критические точки функции S: S‘ = 0, т.е.

Покажем, что при найденном значении h функция Sбок достигает минимума.

.

Найти радиус основания и высоту цилиндра наибольшего объема, который можно вписать в шар радиусом R.

Пусть r – радиус основания цилиндра, h – высота.

Нам нужно максимизировать объем цилиндра .

Используя условие задачи, найдем связь между r и h. По теореме Пифагора из треугольника ABC следует, что . Отсюда .

, по смыслу задачи 0≤h≤2R.

.

Покажем, что при найденном значении h функция V принимает наибольшее значение.

Как найти минимум функции. Значения функции и точки максимума и минимума

Приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.

Приравняйте данную производную к нулю (в данном случае x2=0).

Найдите значение переменной данного . Это будут те значения, при данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2×2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1

Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных . На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет знак минус. Если x=0, то значение будет равно 2, а на данном промежутке ставится знак. Если x=1, то производная также будет равна -0,24 и ставится минус.

Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Для нахождения производной существуют онлайн-сервисы, которые подсчитывают нужные значения и выводят результат. На таких сайтах можно найти производную до 5 порядка.

  • Один из сервисов вычисления производных
  • точку максимума функции

Точки максимума функции наряду с точками минимума называются точками экстремума. В этих точках функция меняет характер поведения. Экстремумы определяются на ограниченных числовых интервалах и всегда являются локальными.

Процесс нахождения локальных экстремумов называется функции и выполняется путем анализа первой и второй производной функции. Перед началом исследования убедитесь, что заданный интервал значений аргумента принадлежит к допустимым значениям. Например, для функции F=1/x значение аргумента х=0 недопустимо. Или для функции Y=tg(x) аргумент не может иметь значение х=90°.

Убедитесь, что функция Y дифференцируема на всем заданном отрезке. Найдите первую производную Y». Очевидно, что до достижения точки локального максимума функция возрастает, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость изменения функции. Пока функция возрастает, скорость этого процесса является величиной положительной. При переходе через локальный максимум функция начинает убывать, и скорость процесса изменения функции становится отрицательной. Переход скорости изменения функции через ноль происходит в точке локального максимума.

Например, функция Y=-x²+x+1 на отрезке от -1 до 1 имеет непрерывную производную Y»=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y»=-2. Постройте по точкам график функции Y=-x²+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Задачи на нахождение точек экстремумафункции решаются по стандартной схеме в 3 шага.

Шаг 1 . Найдите производную функции

  • Запомнитеформулы производной элементарных функции и основные правила дифференцирования, чтобы найти производную.

Шаг 2 . Найдите нули производной

  • Решите полученное уравнение, чтобы найти нули производной.

Шаг 3 . Найдите точки экстремума

  • Используйте метод интервалов, чтобы определить знаки производной;
  • В точке минимума производная равна нулю и меняет знак с минуса на плюс, а вточке максимума – с плюса на минус.

Применим этот подход, чтобы решить следующую задачу:

Найдите точку максимума функции y=x3−243x+19.

1) Найдем производную: y′(x)=(x3−243x+19)′=3×2−243;

2) Решим уравнение y′(x)=0: 3×2−243=0⇔x2=81⇔x1=−9,×2=9;

Ссылка на основную публикацию
Adblock
detector